ANSI/NEMA MG 1-2016

Motors and Generators
ANSI/NEMA MG 1-2016

Motors and Generators

Approved as an American National Standard
ANSI Approval Date: June 1, 2018

Published by:
National Electrical Manufacturers Association
1300 North 17th Street, Suite 900
Rosslyn, Virginia 22209

www.nema.org

© 2016 National Electrical Manufacturers Association. All rights, including translation into other languages, reserved under the Universal Copyright Convention, the Berne Convention for the Protection of Literary and Artistic Works, and the International and Pan American copyright conventions.
NOTICE AND DISCLAIMER

The information in this publication was considered technically sound by a consensus among persons engaged in its development at the time it was approved. Consensus does not necessarily mean there was unanimous agreement among every person participating in the development process.

The National Electrical Manufacturers Association (NEMA) standards and guideline publications, of which the document herein is one, are developed through a voluntary standards development process. This process brings together volunteers and/or seeks out the views of persons who have an interest in the topic covered by this publication. Although NEMA administers the process and establishes rules to promote fairness in the development of consensus, it does not write the documents, nor does it independently test, evaluate, or verify the accuracy or completeness of any information or the soundness of any judgments contained in its standards and guideline publications.

NEMA disclaims liability for any personal injury, property, or other damages of any nature, whether special, indirect, consequential, or compensatory, directly or indirectly resulting from the publication, use of, application, or reliance on this document. NEMA disclaims and makes no guaranty or warranty, express or implied, as to the accuracy or completeness of any information published herein, and disclaims and makes no warranty that the information in this document will fulfill any particular purpose(s) or need(s). NEMA does not undertake to guarantee the performance of any individual manufacturer’s or seller’s products or services by virtue of this standard or guide.

In publishing and making this document available, NEMA is not undertaking to render professional or other services for or on behalf of any person or entity, nor is NEMA undertaking to perform any duty owed by any person or entity to someone else. Anyone using this document should rely on his or her own independent judgment or, as appropriate, seek the advice of a competent professional in determining the exercise of reasonable care in any given circumstance. Information and other standards on the topic covered by this publication may be available from other sources, which the user may wish to consult for additional views or information not covered by this publication.

NEMA has no power, nor does it undertake to police or enforce compliance with the contents of this document. NEMA does not certify, test, or inspect products, designs, or installations for safety or health purposes. Any certification or other statement of compliance with any health- or safety-related information in this document shall not be attributable to NEMA and is solely the responsibility of the certifier or maker of the statement.
Summary of Changes made to MG 1-2016 revision/edition. Changes made for the MG 1-2016 revision are marked by an black line to the left of the changed material.

NOTE: Where text has been revised in more than one version, only the most recent is color-coded

Example of change made for MG 1-2016

Section II, Part 10
10.40.2 Addition/Revision of Superscripts.
10.40.2 Revision of Superscripts from 2 to 1 in items d, and e.

Section II, Part 12
12.0 Corrected Hp rating from 120 to 125
12.35.1 Table Revised table to include an additional column (and footnote) for Locked –Rotor kVA Code.
Table 12-1 Revised to including ½ Hp and by adding additional column (and Footnote) for Locked-Rotor kVA Code.
12.42.2 Added notes referencing air-cooling
12.43 Added notes referencing air-cooling
12.58.1 Deleted Superscripts
12.58.2 Revised to accommodate 50Hz efficiency ratings. Addition/Revision of Superscripts.
12.60 Revision of title to denote Premium Efficiency
12.60.1 Added Rating to title and deleted paragraph as not applicable
12.60.1.4 Revised paragraph to include 60Hz and included reference to Table 12-16.
12.60.2 Revised paragraph for clarity and changed premium efficient to premium efficiency.
12.60.3 Revised paragraph for clarity purposes.
12.61 Relocated to follow table 12-21
Table 12-14 Corrected table by removing strikeouts in 6 pole efficiency column

Section II, Part 14
14.3 Addition of items 9 and 10 under letter a.

Section II, Part 18
Table 2 of 18.250 Correction of frame designations

Section III, Part 20
20.8 Addition/Revision of notes
20.21.1 Addition/Revision of notes
20.21. A Revision of section for inclusion of 50Hz efficiency and clarification purposes
20.21. C.1 Revised to change premium efficient to premium efficiency
20.21. C.2 Revised to change premium efficient to premium efficiency
20.21. C.3 Revised paragraph for clarity and changed premium efficient to premium efficiency.
20.21. C.4 Deleted paragraph as information is already covered in 20.21.C.1
20.25. C.1 Addition of Superscript 3 and associated note.
Section III, Part 21
21.10 Addition of notes related to cooling air
21.28.3 Addition of items 9 and 10 under letter a.

Section III, Part 23
23.25.3 Addition of items 9 and 10 under letter a.

Section III, Part 24
24.80.3 Addition of items 9 and 10 under letter a.

Section IV, Part 31
31.1.3 Addition of items 9 and 10 under letter a.
31.4.4.2 Revision/addition of Paragraphs, notes and tables

Section IV, Part 32
32.33.3 Addition of items 9 and 10 under letter a.

Section IV, Part 32
33.4.1.2 Addition of items 9 and 10 under letter a.
Changes for MG 1-2016 are not identified. Changes made for the MG 1-2014 revision are identified here.

Section I, Part 1

1.1 Revised text, updated, and occasionally added references
1.19.1.2 Updated references to subsections
1.27.2 Updated references to subsections
1.27.2 Added footnote
1.41.2 Reference to added clause
1.41.3 Reference to added clause
1.54 Revised and redefined

Section I, Part 4

4.4.8 Added subtitle

Section II, Part 10

10.39.1 Addition of letter m to Nameplate Marking Requirement

Section II, Part 12

12.31 Revised and added characteristics
12.58.1 Added references, revised determination of Motor Efficiency and Losses, deleted outdated information, added footnotes
12.58.2 Added and revised to include Design N, Design L and Design M single-speed single-phase squirrel-cage small motors, added efficiency levels to Table 12-10
12.59 Revised title to Efficiency Levels of Energy Efficient Polyphase Squirrel-Cage Random Wound Induction Motors Rated 600 Volts or Less at 60 Hz and added new paragraph
12.60 Revised title to Efficiency Levels of Premium Efficiency Random Wound Electric Motors Rated 600 Volts or Less at 60 Hz
12.60.1 Revised title to Random Wound Electric Motor, added paragraph
12.60.1.1 Added new subsection title Single-Phase Capacitor-Start Induction-Run or Capacitor-Start Capacitor-Run Small Motors and paragraph
12.60.1.2 Added new subsection title Single-Phase Capacitor-Start Capacitor-Run Small Motors and paragraph
12.60.1.3 Added new subsection title Polyphase Small Motors and paragraph
12.60.1.4 Added new subsection title Polyphase Medium Motors and paragraph
12.60.2 Revised 60 Hz Motors Rated Medium Voltage, 5000 Volts or Less (Form Wound) and paragraph
12.60.3 Revised 50 Hz Motors Rated 600 Volts or Less (Random Wound), paragraph, revised formulas, added 8 Pole category to table, revised values
12.61 Revised Table 12-11 title, revised Table 12-12, revised Table 12-13, deleted data in Table 12-14, added Table 12-15, added Table 12-16, added Table 12-17, added Table 12-18, added Table 12-19, added Table 12-20, added Table 12-21
Section III, Part 20

20.21 Addition of kW Values
20.21.1 Addition of subtitle, addition of kW Values
20.21.A Revision of referenced paragraphs
20.21.B Revised paragraph, added Table 20-A
20.21.C Revised paragraph, added Table 20-B
20.21.C.2 Revised paragraphs, added Table 20-C
20.21.C.3 Revised paragraphs, added Table 20-D
20.21.C4 Added paragraph, added Table 20-E, Table 20-F, Table 20-G
20.25.1 Revised Nameplate Marking requirement by the addition of I (NEMA nominal efficiency)

Section IV, Part 31

31.3.5 Simplified text
31.4.4.3 Revised paragraph for clarification purposes
Changes made for MG 1-2009, Revision 1-2010 are marked by an orange line to the left of the changed material

NOTE: Where text has been revised in more than one version, only the most recent is color-coded

Example of change made for MG 1-2009, Revision 1-2010

Section I, Part 7

7.4.2 Replaced “inches” with “mils”
7.6.1 Revised text
Figure 7-1 Renamed figure
Figure 7-1 Revised text
Figure 7-6 Replaced figure Table 7-1
7.8.1 Revised table
Figure 7-6 Deleted section
Table 7-1 Deleted section
7.8.2 Deleted section
7.8.3 Revised reference to table
7.8.4 Revised reference to table
7.8.5 Revised reference to table
7.8.6 Revised text and reference to table
7.9.1 Deleted section
Table 7-2 Deleted table
Table 7-3 Deleted table
Table 7-4 Added table to replace Tables 7-2 and 7-3

Section II, Part 14

14.48 Added section
Changes made for MG 1-2009 are marked by a red line to the left of the changed material

NOTE: Where text has been revised in more than one version, only the most recent is color-coded

Example of change made for MG 1-2009

Section I, Part 1
1.1 Added: Reference to IEC 60034-30-2008
1.16 Deleted section
1.41.3 Added: Premium Efficiency Motor

Section I, Part 2
2.2 Added: “To prevent confusion with the numerals 1 and 0, the letters “I” and “O” shall not be used.”
Updated footnote references Added and revised markings
2.60.1.2 Revised Figure 2-48B for clarity
2.67 Added: Auxiliary Devices (entire section)

Section I, Part 4
Table 4-2 Dimension revised in column 6

Section II, Part 10
Table 10-5 Adjusted table

Section II, Part 12
12.41 In table, corrected synchronous speed of the 50 Hz machine
12.60.3 Added: Additional paragraphs, equation, and table
Table 12-14 Replaced Table 12-14
12.62 Revised 12.62a
For 12.62b and 12.62d, revised minimum insulation resistance
Added: Note
Note 2: Updated reference to 20.8

Section II, Part 13
13.2 Revised frame size

Section II, Part 18:
18.131 Figure 18-16: Dimension revised to 5.875

Section III, Part 20:
20.18.1 Revised 20.18.1a
For 20.18.1b and 20.18.1d, revised minimum insulation resistance
20.18.2 Revised 20.18.2a
For 20.18.2b and 20.18.2d, revised minimum insulation resistance
Added: Note

Section IV, Part 30:
Table 30-1 Revised footnote G.1 reference to 12.53
Changes made for MG 1-2006 Revision 1, published Nov. 20, 2007 (includes MG 1-2006 Errata) are marked by a blue line to the left of the changed material.

NOTE: Where text has been revised in more than one version, only the most recent is color-coded.

Example of change made for MG 1-2006 Revision 1

Contents

Entire Table of Contents was revised due to added sections and repagination

Section I, Part 1

1.16 Nema Premium® Efficiency Electric Motor
 Changed TM to ® Deleted general paragraph, added:
 1.16.1 60 Hz
 1.16.2 50 Hz

Section I, Part 2

2.2 Terminal Markings Footnotes
2.20.2 Induction Machines
2.24 Direction of Rotation
2.60.1.1 Terminal Markings Using “T”
2.60.1.2 Terminal Markings in Accordance with IEC 60034-8 Using U, V, W
Figure 2-48B Added figure
2.61.6 Sixth Revised text

Section I, Part 3

3.1.8 Accessories and Components Inserted sentence

Section I, Part 4

4.9.4 Parallelism of Keyseats to Shaft Centerline
4.9.5 Lateral Displacement of Keyseats
Figure 4-7 Corrected specifications
4.9.8 Shaft Extension Key(s)
Table 4-7 Corrected specifications

Section II, Part 10 Ratings—AC Motors

10.38 Nameplate Temperature Ratings for Alternating-Current Small and Universal Motors Corrected Reference 12.42.3
10.40.1 Medium Single-Phase and Polyphase Squirrel-Cage Motors Corrected references in text and footnote 2
10.42.2 Polyphase Wound-Rotor Motors Corrected references in text

Section II, Part 10 Ratings—DC Motors

10.66.2 Small Motors Except Those Rated 1/20 Horsepower and Less Corrected footnote references
Section II, Part 12 Ratings Tests and Performance —AC Motors

12.42.4 Temperature Rise for Air-Cooled Machines for Ambients Lower than 40° C, but Not Below 0° C (Added section)

12.43.2 Temperature Rise for Air-Cooled Machines for Ambients Lower than 40° C, but Not Below 0° C (Added section)

12.60 Efficiency Level of Premium Efficiency Electric Motors (Added throughout) Tables 12-12 through 12-14 (Added ®)

12.62 Machine With Encapsulated or Sealed Windings—Conformance Tests (Clarified text in b and d)

Section II, Part 12 Ratings Tests and Performance —DC Motors

12.67.5 Temperature Rise for Air-Cooled Machines for Ambients Lower than 40° C, but Not Below 0° C Added section

Section II, Part 15

15.41.2 Temperature Rise for Ambients Higher than 40°C Added section

Section III, Part 20

20.8.1 Machines with a 1.0 Service Factor at Rated Load Corrected reference in footnote

20.8.2 Machines with a 1.15 Service Factor at Service Factor Load Corrected reference in footnote

20.18.1 Test for Stator Which Can Be Submerged Clarified text in b and d

20.18.2 Test for Stator Which Can Be Submerged Clarified text in b and d

Section III, Part 20

21.10.5 Temperature Rise for Air-Cooled Motors for Ambients Lower than 40° C, but Not Below 0° C Deleted lower ambients in a and b

21.28.3 Unusual Service Conditions Corrected references in subclause b.

21.37 Compressor Factors Corrected reference

21.38 Surge Capabilities of AC Windings With Form-Wound Coils Corrected reference

Section III, Part 23

23.9.3 Temperature Rise for Air-Cooled Machines for Ambients Lower than 40° C, but Not Below 0° C Added section
Section III, Part 24

24.40.3 Temperature Rise for Air-Cooled Machines for Ambients Lower than 40º C, but Not Below 0º C
Added section

Section IV, Part 31

31.4.1.6 Temperature Rise for Air-Cooled Machines for Ambients Lower than 40º C, but Not Below 0º C
Added section

Section IV, Part 32

Table 32-3 corrected reference
32.6.2 Temperature Rise for Air-Cooled Machines for Ambients Lower than 40º C, but Not Below 0º C
Added section
32.26 Generator Terminal Housing
Added "housing"

Section IV, Part 33

33.3.2.5 Temperature Rise for Air-Cooled Machines for Ambients Lower than 40º C, but Not Below 0º C
Added section
Changes made for MG 1-2003 Revision 2, published as MG 1-2006, are marked by a purple line to the left of the changed material

NOTE: Where text has been revised in more than one version, only the most recent is color-coded

Example of change made for MG 1-2003 Revision 2, published as MG 1-2006

Section I, Part 1

1.1 Referenced Standards updated to reflect current editions
1.70 Nameplate Marking Entire section added

Section I, Part 3

3.1.8 Accessories and Components Correction
3.1.11 Tests of an Assembled Group of Machines and Apparatus Correction

Section I, Part 4

4.4.1 Dimensions for Alternating-Current Foot-Mounted Machines with Single Straight-Shaft Extension
Notes correction
4.4.2 Notes correction
4.4.3 Notes correction
4.5.1 Notes correction
4.5.2 Notes correction
4.5.3 Notes
4.9.3 Bottom of Keyseat to Shaft Surface
Figure 4-7 Corrected dimension
4.9.8 Shaft Extension Key(s) correction

Section I, Part 9

9.1 Scope
changed “electrical motors” to “machines”
9.4 Methods of Measurement updated references to ANSI standards
9.4.2 “The” (added; “Either” deleted) method specified in ANSI S12.56 may be used.
9.6.2 Corrected reference to 9.6.2b
Table 9-4 Updated ANSI standard references; added third column

Section II, Part 10

10.39 corrected section reference
10.39.6 deleted
10.40.1 Medium Single-Phase and Polyphase Squirrel-Cage Motors corrected section reference
10.66 Nameplate Marking correction
10.66.3 Medium Motors correction

Section II, Part 12

12.3 High-Potential Test Voltages for Universal, Induction, and Direct-Current Motors
Corrections to Effective Test Voltage
Corrections to Note 3—80 percent

© 2016 National Electrical Manufacturers Association
12.35 Locked-Rotor Current of 3-Phase Small and Medium Squirrel-Cage Induction Motors
 deleted reference “60-hertz” and “rated at 230 volts”

12.40.1 Design A and B Motors
 The pull-up torque of Design A and B
 Added: 60- and 50-hertz

12.40.2 Design C Motors
 The pull-up torque of Design C
 Added: 60- and 50-hertz, single speed, polyphase squirrel-cage medium motors

12.54.1 Normal Starting Conditions
12.54.3 Considerations for Additional Starts
Table 12-7 Squirrel-Cage Induction Motors
Revised specifications

Section II, Part 14

14.43 Aseismatic Capability
Table 14-1 Medium Motors—Polyphase Induction
Correction to conventional specifications

Section II, Part 15

15.12 Nameplate Marking

Section II Part 18

Added and corrected headers throughout (editorial)
• Definite Purpose Machines
• Motors for Hermetic Refrigeration Compressors
• Small Motors for Air Conditioning Condensers and Evaporator Fans
• Small Motors for Gasoline Dispensing Pumps
• Small Motors for Home Laundry Equipment
• Medium AC Polyphase Elevator Motors
• Medium AC Crane Motors
• Medium Shell-Type Motors for Woodworking and Machine-Tool Applications

18.9 Variations
updated reference to 12.44

18.27 Variations From Rated Voltage and Rated Frequency
updated reference to 12.44

18.41 Variations from Rated Voltage and Rated Frequency
updated reference to 12.44

18.52 Variations from Rated Voltage and Rated Frequency
updated reference to 12.44

18.74 Variations from Rated Voltage and Rated Frequency
updated reference to 12.44

18.101 Variations from Rated Voltage and Rated Frequency
updated reference to 12.44

18.111 Nameplate Marking
18.116 Variations from Rated Voltage and Rated Frequency
updated reference to 12.44
18.128 Variations from Rated Voltage and Rated Frequency updated reference to 12.44
18.142 Variations from Rated Voltage and Rated Frequency updated reference to 12.44
18.152 Variations from Rated Voltage and Rated Frequency updated reference to 12.44
18.153 Variations from Rated Voltage and Rated Frequency updated reference to 12.44
18.165 Variations from Rated Voltage and Rated Frequency updated reference to 12.44
18.166 Variations from Rated Voltage and Rated Frequency updated reference to 12.44
18.177 Variations from Rated Voltage and Rated Frequency updated reference to 12.44
18.178 Variations from Rated Voltage and Rated Frequency updated reference to 12.44
18.210 Variations from Rated Voltage and Rated Frequency updated reference to 12.44
18.211 Nameplate Marking
18.216 Nameplate Marking (Revised reference)
18.225 Variations from Rated Voltage and Rated Frequency updated reference to 12.44
18.230 Dimensions and Tolerances for Alternating-Current Open and Totally Enclosed Wound-Rotor Crane Motors Having Antifriction Bearings Deleted note
18.247 Variations from Rated Voltage and Rated Frequency updated reference to 12.44
18.264 Nameplate Marking
18.269.1 AC Torque Motors
18.269.2 DC Torque Motors

Section III Part 20
20.5 Voltage Ratings (complete replacement of existing text)
20.7.3.1 General
20.8.5 Temperature Rise for Air-Cooled Machines for Ambients Lower than 40° C, but Not Below 0 ° C Added section
20.10.3 Motor Torques When Customer Specifies A Custom Load Curve Added
20.10.4 Motor with 4.5 pu and Lower Locked-Rotor Current Added
20.11 Load Wk² for Polyphase Squirrel-Cage Induction Motors
20.24.2 Voltage Unbalance Defined Corrected specification in example
20.25 For some examples of additional information that may be included on the nameplate see 1.70.2.
20.25.5 Deleted
20.27 Embedded Temperature Detectors Revised text and dimensions in table
20.31.3 Units for Capability Requirements

© 2016 National Electrical Manufacturers Association
20.35.8 Test Voltage Values

Section III Part 21

20.5 Voltage Ratings Revised specification
20.7.3.1 Voltage Ratings Added
20.8.5 Preferred motor output/voltage rating
 Added
21.8.3.1 General
21.10.5 Temperature Rise for Air-Cooled Motors for Ambients Lower than 40° C,
 but not Below 0° C
 Added section
21.11 deleted text
21.11.1 General Added
21.11.2 Motor Torques When Customer Supplies Load Curve
21.25 For some examples of additional information that may be included on the
 nameplate see 1.70.2.
 Added

Section III Part 23

23.13 Efficiency
23.24 For some examples of additional information that may be included on the
 nameplate see 1.70.2.
 Added

Section III Part 24

24.61 Nameplate Marking

Section IV Part 30

30.1.3 Power Factor Correction
Figure 30-2 The Effect of Reduced Cooling On The Torque Capability At Reduced Speeds of 60
 Hz Nema Design A and B Motors
30.2.2.2.4 Motor Torque During Operation Above Base Speed
30.2.2.8 Voltage Stress

Section IV Part 31

31.5.1 Variable Torque Applications

Section IV Part 30

32.24 Nameplate Marking Revised additional information

Section IV Part 30

33.3.2.2 Embedded Temperature Detectors

Index

Revised references throughout
Changes made for MG 1-2003, Revision 1-2004 are marked by a green line to the left of the changed material

NOTE: Where text has been revised in more than one version, only the most recent is color-coded

Example of change made for MG 1-2003 Revision 1-2004

Contents

pages vii, viii, xii, xv, xxvii

Section I, Part 5

5.1 Scope
5.3.4 Table 5-1
5.4.1 Indication of Degree of Protection
5.6 General Requirements for Tests
5.7 Tests for First Characteristic Numeral
Table 5-3: Test and Acceptance Conditions for First Characteristic Numeral
5.8.1 Test Conditions
5.8.2.1 Allowable Water Leakage
5.8.2.2 Post Water Electrical Test
Figure 5-1: Standard Test Finger Notes
Figure 5-2 Added: (Reproduced with permission of the IEC, which retains the copyright.)
Figure 5-3 Added: (Reproduced with permission of the IEC, which retains the copyright.)
Figure 5-4 Added: (Reproduced with permission of the IEC, which retains the copyright.)
Figure 5-5 Added: (Reproduced with permission of the IEC, which retains the copyright.)
Figure 5-6 Added: (Reproduced with permission of the IEC, which retains the copyright.)

Section II, Part 12

12.51.1 General-Purpose Alternating-Current Motors of the Open Type
Table 12-4 NOTE: *In the case of polyphase squirrel-cage motors, these service factors apply only to Design A, B, and C motors.
12.51.2 Other Motors
12.58.2 Efficiency of Polyphase Squirrel-Cage Medium Motors with Continuous Ratings

Section II DC Small and Medium Motors

Added Header (editorial) to odd pages

Section II, Part 14

14.3 Unusual Service Conditions
b. Operation where: (revised text)
 1. There is excessive departure from rated voltage or frequency, or both (see 12.44 for alternating current motors and 12.68 for direct-current motors)
 3. The alternating-current supply voltage is unbalanced by more than 1 percent (see 12.45 and 14.36)
14.42 Application of V-Belt Sheaves To Alternating Current Motors Having Antifriction Bearings

14.42.1 Dimensions
14.42.1.1 Selected Motor Ratings
14.42.1.2 Other Motor Ratings
14.42.2 Radial Overhung Load Limitations

Table 14-1 NOTE: The width of the sheave shall be not greater than that required to transmit the indicated horsepower but in no case shall it be wider than 2(N-W) - 0.25.

Table 14-1A Added 2004

Section III, Part 20
20.17.2 Test Voltage—Primary Windings Footnote

Section III, Part 21
21.35.1 Undamped Natural Frequency

Section IV, Part 30
30.0 Scope
30.2.2.2 Torque Derating Based on Reduction in Cooling
30.2.2.4 Motor Torque During Operation Above Base Speed

Figure 30-4 NOTE:

Figure 30-4 NOTE: a. Standard NEMA Design A and B motors in frames per Part 13.

Index

Revised references on pages 3, 4, 5
Changes made for MG 1-2011 are marked by a *teal* line to the left of the changed material

NOTE: Where text has been revised in more than one version, only the most recent is color-coded

Example of change made for MG 1-2011

Part I, Section I

1.41.2 Addition of or 20.21 B
1.41.3 Addition of or 20.21 C

Part 12, Section II

12.59 Addition of Random Wound

Table 12-11 Addition of (Random Wound) to open and enclosed motor table title

Table 12-12 Removed open and enclosed motor table efficiency values for 6 pole 300-500HP motors and added 8 pole efficiency values

Table 12-13 Removed table efficiency values for 6 pole 400, 450 and 500 HP motors and added 8 pole efficiency values

Table 12-14 Removed efficiency values for 6 pole 400, 450 and 500 HP motors

Part 20, Section III

20.21 Revised
20.21.A Added efficiency of polyphase squirrel cage large motors with continuous ratings
20.21.B Added efficiency levels of energy efficient polyphase squirrel-cage random wound large induction Motors

Table 20-A Addition of full load efficiency table
20.21.C Addition of efficiency level of premium efficiency large electric motors
20.21.C.1 Addition of 60Hz motors rated 600 volts or less

Table 20-B Addition of full load premium efficiency table
20.21.C.2 Addition of 60Hz motors rated 5000 volts or less

Table 20-C Addition of full load efficiency values for 60Hz premium efficiency of motors rated 5000Volts or less
20.21.C.3 Addition of 50Hz motors rated 600volts or less

Table 20-D Addition of full load efficiency values for 50Hz premium efficiency motors 600 volts or less
20.25.1 Addition of item I,
Contents

Foreword ... iix

Section I General Standards Applying to All Machines

Part 1 Referenced Standards and Definitions ... 1-1

1.1 Referenced Standards .. 1-1

Definitions ... 1-5

Classification According to Size .. 1-5

1.2 Machine .. 1-5
1.3 Small (Fractional) Machine .. 1-5
1.4 Medium (Integral) Machine ... 1-5
 1.4.1 Alternating-Current Medium Machine .. 1-5
 1.4.2 Direct-Current Medium Machine .. 1-5
Table 1-1 Alternating Current Medium Machine ... 1-5
1.5 Large Machine ... 1-5
 1.5.1 Alternating-Current Large Machine .. 1-5
 1.5.2 Direct-Current Large Machine .. 1-6

Classification According To Application .. 1-6

1.6 General Purpose Motor ... 1-6
 1.6.1 General-Purpose Alternating-Current Motor ... 1-6
 1.6.2 General-Purpose Direct-Current Small Motor ... 1-6
1.7 General-Purpose Generator ... 1-6
1.8 Industrial Small Motor .. 1-6
1.9 Industrial Direct-Current Medium Motor .. 1-6
1.10 Industrial Direct-Current Generator .. 1-7
1.11 Definite-Purpose Motor ... 1-7
1.12 General Industrial Motors .. 1-7
1.13 Metal Rolling Mill Motors .. 1-7
1.14 Reversing Hot Mill Motors ... 1-7
1.15 Special-Purpose Motor ... 1-7
1.16 .. 1-7

Classification According to Electrical Type .. 1-7

1.17 General .. 1-7
 1.17.1 Electric Motor ... 1-7

© 2016 National Electrical Manufacturers Association
1.17.2 Electric Generator ... 1-7
1.17.3 Electric Machines ... 1-8

1.18 Alternating-Current Motors .. 1-8
1.18.1 Induction Motor ... 1-8
1.18.2 Synchronous Motor .. 1-8
1.18.3 Series-Wound Motor .. 1-9

1.19 Polyphase Motors ... 1-9
1.19.1 Design Letters of Polyphase Squirrel-Cage Medium Motors 1-9

1.20 Single-Phase Motors ... 1-10
1.20.1 Design Letters of Single-Phase Small Motors 1-10
1.20.2 Design Letters of Single-Phase Medium Motors 1-10
1.20.3 Single-Phase Squirrel-Cage Motors 1-10
1.20.4 Single-Phase Wound-Rotor Motors 1-11
1.20.4.3 Repulsion-Start Induction Motor 1-11

1.21 Universal Motors ... 1-11
1.21.1 Series-Wound Motor .. 1-12
1.21.2 Compensated Series-Wound Motor 1-12

1.22 Alternating-Current Generators .. 1-12
1.22.1 Induction Generator ... 1-12
1.22.2 Synchronous Generator .. 1-12

1.23 Direct-Current Motors .. 1-12
1.23.1 Shunt-Wound Motor .. 1-12
1.23.2 Series-Wound Motor .. 1-12
1.23.3 Compound-Wound Motor ... 1-13
1.23.4 Permanent Magnet Motor .. 1-13

1.24 Direct-Current Generators ... 1-13
1.24.1 Shunt-Wound Generator ... 1-13
1.24.2 Compound-Wound Generator ... 1-13

Classification According to Environmental Protection and Methods of Cooling 1-13

1.25 Open Machine (IP00, IC01) ... 1-13
1.25.1 Dripproof Machine (IP12, IC01) .. 1-13
1.25.2 Splash-Proof Machine (IP13, IC01) 1-13
1.25.3 Semi-Guarded Machine (IC01) .. 1-14
1.25.4 Guarded Machine (IC01) ... 1-14

Figure 1-1* Probe for Hazardous Rotating Parts 1-14
Figure 1-2* Probe for Film-Coated Wire .. 1-14
Figure 1-3 Articulated Probe for Uninsulated Live Metal Parts
(Reproduced with permission of IEC, which retains the copyright) 1-15
1.25.5 Dripproof Guarded Machine (IC01) ... 1-15
1.25.6 Open Independently Ventilated Machine (IC06) ... 1-15

1.25. Open Pipe-Ventilated Machine ... 1-15
1.25.8 Weather-Protected Machine ... 1-16

1.26 Totally Enclosed Machine .. 1-16
1.26.1 Totally Enclosed Nonventilated Machine (IC410) 1-16
1.26.2 Totally Enclosed Fan-Cooled Machine ... 1-16

1.26.3 Totally Enclosed Fan-Cooled Guarded Machine (IC411) 1-16
1.26.4 Totally Enclosed Pipe-Ventilated Machine (IP44) 1-16
1.26.5 Totally Enclosed Water-Cooled Machine (IP54) ... 1-17
1.26.6 Water-Proof Machine (IP55) ... 1-17
1.26.7 Totally Enclosed Air-to-Water-Cooled Machine (IP54) 1-17
1.26.8 Totally Enclosed Air-to-Air-Cooled Machine (IP54) 1-17
1.26.9 Totally Enclosed Air-Over Machine (IP54, IC417) 1-17
1.26.10 Explosion-Proof Machine .. 1-17
1.26.11 Dust-Ignition-Proof Machine .. 1-17

1.27 Machine With Encapsulated or Sealed Windings 1-18
1.27.1 Machine with Moisture Resistant Windings ... 1-18
1.27.2 Machine with Sealed Windings ... 1-18

Classification According to Variability of Speed ... 1-18

1.30 Constant-Speed Motor .. 1-18
1.31 Varying-Speed Motor .. 1-18
1.32 Adjustable-Speed Motor .. 1-18
1.33 Base Speed of an Adjustable-Speed Motor .. 1-18
1.34 Adjustable Varying-Speed Motor ... 1-18
1.35 Multispeed Motor .. 1-19

Rating, Performance, and Test ... 1-19

1.40 Rating of a Machine .. 1-19
1.40.1 Continuous Rating .. 1-19
1.40.2 Short-Time Rating .. 1-19

1.41 Efficiency .. 1-19
1.41.1 General .. 1-19
1.41.2 Energy Efficient Polyphase Squirrel-Cage Induction Motor 1-19
1.41.3 Premium Efficiency Motor ... 1-19
1.42 Service Factor—AC Motors ... 1-19
1.43 Speed Regulation of DC Motors ... 1-19

© 2016 National Electrical Manufacturers Association
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.43.1</td>
<td>Percent Compounding of Direct-Current Machines</td>
<td>1-20</td>
</tr>
<tr>
<td>1.44</td>
<td>Voltage Regulation of Direct-Current Generators</td>
<td>1-20</td>
</tr>
<tr>
<td>1.45</td>
<td>Secondary Voltage of Wound-Rotor Motors</td>
<td>1-20</td>
</tr>
<tr>
<td>1.46</td>
<td>Full-Load Torque</td>
<td>1-20</td>
</tr>
<tr>
<td>1.47</td>
<td>Locked-Rotor Torque (Static Torque)</td>
<td>1-20</td>
</tr>
<tr>
<td>1.48</td>
<td>Pull-Up Torque</td>
<td>1-20</td>
</tr>
<tr>
<td>1.49</td>
<td>Pushover Torque</td>
<td>1-20</td>
</tr>
<tr>
<td>1.50</td>
<td>Breakdown Torque</td>
<td>1-20</td>
</tr>
<tr>
<td>1.51</td>
<td>Pull-Out Torque</td>
<td>1-20</td>
</tr>
<tr>
<td>1.52</td>
<td>Pull-In Torque</td>
<td>1-21</td>
</tr>
<tr>
<td>1.53</td>
<td>Locked-Rotor Current</td>
<td>1-21</td>
</tr>
<tr>
<td>1.54</td>
<td>No-Load Current</td>
<td>1-21</td>
</tr>
<tr>
<td>1.55</td>
<td>Temperature Tests</td>
<td>1-21</td>
</tr>
<tr>
<td>1.56</td>
<td>Ambient Temperature</td>
<td>1-21</td>
</tr>
<tr>
<td>1.57</td>
<td>High-Potential Tests</td>
<td>1-21</td>
</tr>
<tr>
<td>1.58</td>
<td>Starting Capacitance for a Capacitor Motor</td>
<td>1-21</td>
</tr>
<tr>
<td>1.59</td>
<td>Radial Magnetic Pull and Axial Centering Force</td>
<td>1-21</td>
</tr>
<tr>
<td>1.59.1</td>
<td>Radial Magnetic Pull</td>
<td>1-21</td>
</tr>
<tr>
<td>1.59.2</td>
<td>Axial Centering Force</td>
<td>1-21</td>
</tr>
<tr>
<td>1.60</td>
<td>Induction Motor Time Constants</td>
<td>1-22</td>
</tr>
<tr>
<td>1.60.1</td>
<td>General</td>
<td>1-22</td>
</tr>
<tr>
<td>1.60.2</td>
<td>Open-Circuit AC Time Constant</td>
<td>1-22</td>
</tr>
<tr>
<td>1.60.3</td>
<td>Short-Circuit AC Time Constant</td>
<td>1-22</td>
</tr>
<tr>
<td>1.60.4</td>
<td>Short-Circuit DC Time Constant</td>
<td>1-22</td>
</tr>
<tr>
<td>1.60.5</td>
<td>X/R Ratio</td>
<td>1-22</td>
</tr>
<tr>
<td>1.60.6</td>
<td>Definitions (See Figure 1-4)</td>
<td>1-22</td>
</tr>
<tr>
<td></td>
<td>Figure 1-4</td>
<td>1-23</td>
</tr>
<tr>
<td></td>
<td>Equivalent Circuit</td>
<td>1-23</td>
</tr>
<tr>
<td>1.61</td>
<td>Synchronous Generator—Complete</td>
<td>1-23</td>
</tr>
<tr>
<td>1.61.1</td>
<td>Belted Type</td>
<td>1-23</td>
</tr>
<tr>
<td>1.61.2</td>
<td>Engine Type</td>
<td>1-23</td>
</tr>
<tr>
<td>1.61.3</td>
<td>Coupled Type</td>
<td>1-23</td>
</tr>
<tr>
<td>1.62</td>
<td>Direct-Current Generator—Complete</td>
<td>1-23</td>
</tr>
<tr>
<td>1.62.1</td>
<td>Belted Type</td>
<td>1-23</td>
</tr>
<tr>
<td>1.62.2</td>
<td>Engine Type</td>
<td>1-23</td>
</tr>
<tr>
<td>1.62.3</td>
<td>Coupled</td>
<td>1-23</td>
</tr>
</tbody>
</table>

Complete Machines and Parts

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.61</td>
<td>Synchronous Generator—Complete</td>
<td>1-23</td>
</tr>
<tr>
<td>1.61.1</td>
<td>Belted Type</td>
<td>1-23</td>
</tr>
<tr>
<td>1.61.2</td>
<td>Engine Type</td>
<td>1-23</td>
</tr>
<tr>
<td>1.61.3</td>
<td>Coupled Type</td>
<td>1-23</td>
</tr>
<tr>
<td>1.62</td>
<td>Direct-Current Generator—Complete</td>
<td>1-23</td>
</tr>
<tr>
<td>1.62.1</td>
<td>Belted Type</td>
<td>1-23</td>
</tr>
<tr>
<td>1.62.2</td>
<td>Engine Type</td>
<td>1-23</td>
</tr>
<tr>
<td>1.62.3</td>
<td>Coupled</td>
<td>1-23</td>
</tr>
</tbody>
</table>
1.63 Face and Flange Mounting

1.63.1 Type C Face

1.63.2 Type D Flange

1.63.3 Type P Flange

Classification of Insulation Systems

1.65 Insulation System Defined

1.65.1 Coil Insulation with its Accessories

1.65.2 Connection and Winding Support Insulation

1.65.3 Associated Structural Parts

1.66 Classification of Insulation Systems

Miscellaneous

1.70 Nameplate Marking

1.70.1 Nameplate

1.70.2 Additional Nameplate Markings

1.71 Code Letter

1.72 Thermal Protector

1.73 Thermally Protected

1.74 Over Temperature Protection

1.75 Part-Winding Start Motor

1.76 Star (Wye) Start, Delta Run Motor

1.77 Constant Flux

1.78 Deviation Factor

1.79 Marking Abbreviations for Machines

Section I General Standards Applying to All Machines

Part 2 Terminal Markings

General

2.1 Location of Terminal Markings

2.2 Terminal Markings

2.3 Direction of Rotation

2.3.1 Alternating-Current Machines

2.3.2 Direct-Current Machines

2.3.3 Motor-Generator Sets

DC Motors and Generators

2.10 Terminal Markings
2.10.1 General .. 2-3
2.10.2 Armature Leads... 2-3
2.10.3 Armature Leads—Direction of Rotation .. 2-3

2.11 Terminal Markings for Dual Voltage Shunt Fields .. 2-3

Figure 2-1 Separately Excited Shunt Field Winding for Series-Parallel Dual Voltage.......................... 2-3

2.12 Direction of Rotation ... 2-4
2.12.1 Direct-Current Motors... 2-4
2.12.2 Direct-Current Generators.. 2-4
2.12.3 Reverse Function ... 2-4

2.13 Connection Diagrams with Terminal Markings for Direct-Current Motors 2-4

Figure 2-2 Shunt Motor—Counterclockwise Rotation Facing End Opposite Drive End, Clockwise Rotation Facing Drive End ... 2-5
Figure 2-3 Shunt Motor—Clockwise Rotation Facing End Opposite Drive End, Counterclockwise Rotation Facing Drive End .. 2-5
Figure 2-4 Compound or Stabilized Shunt Motor—Counterclockwise Rotation Facing End Opposite Drive End, Clockwise Rotation Facing Drive End............ 2-5
Figure 2-5 Compound or Stabilized Shunt Motor—Clockwise Rotation Facing End Opposite Drive End, Counterclockwise Rotation Facing Drive End............ 2-6
Figure 2-6 Series Motor—Counterclockwise Rotation Facing End Opposite Drive End, Clockwise Rotation Facing Drive End ... 2-6
Figure 2-7 Series Motor—Clockwise Rotation Facing End Opposite Drive End, Counterclockwise Rotation Facing Drive End ... 2-6
Figure 2-8* Permanent Magnet Motor—Counterclockwise Rotation Facing End Opposite Drive End, Clockwise Rotation Facing Drive End.................................. 2-7
Figure 2-9* Permanent Magnet Motor—Clockwise Rotation Facing End Opposite Drive End, Counterclockwise Rotation Facing Drive End.................................. 2-7

2.14 Connection Diagrams with Terminal Markings for Direct-Current Generators 2-8

Figure 2-10 Shunt Generator—Clockwise Rotation Facing End Opposite Drive End, Counterclockwise Rotation Facing Drive End .. 2-9
Figure 2-11 Shunt Generator—Counterclockwise Rotation Facing End Opposite Drive End, Clockwise Rotation Facing Drive End .. 2-9
Figure 2-12 Compound Generator—Clockwise Rotation Facing End Opposite Drive End, Counterclockwise Rotation Facing Drive End .. 2-9
Figure 2-13 Compound Generator—Counterclockwise Rotation Facing End Opposite Drive End, Clockwise Rotation Facing Drive End .. 2-10

AC Motors and Generators .. 2-10

2.20 Numerals on Terminals of Alternating-Current Polyphase Machines 2-10
2.20.1 Synchronous Machines.. 2-10
2.20.2 Induction Machines .. 2-10

2.21 Definition of Phase Sequence .. 2-10

2.22 Phase Sequence .. 2-10
2.23 Direction of Rotation of Phasors

Figure 2-14 Rotation of Phasors

2.24 Direction of Rotation

AC Generators and Synchronous Motors

2.25 Reversal of Rotation, Polarity and Phase Sequence

2.30 Connections and Terminal Markings-Alternating—Current Generators and Synchronous Motors—Three-Phase and Single-Phase

Figure 2-15 Single-Phase

Single-Phase Motors

2.40 General

2.40.1 Dual Voltage

Figure 2-16 Dual Voltage

2.40.2 Single Voltage

Figure 2-17 Single Voltage

2.41 Terminal Markings Identified by Color

2.42 Auxiliary Devices Within Motor

2.43 Auxiliary Devices External to Motor

2.44 Marking of Rigidly Mounted Terminals

2.45 Internal Auxiliary Devices Permanently Connected to Rigidly Mounted Terminals

2.46 General Principles for Terminal Markings for Single-Phase Motors

2.46.1 First Principle

2.46.2 Second Principle

2.46.3 Third Principle

2.47 Schematic Diagrams for Split-Phase Motors—Single Voltage—Reversible

2.47.1 Without Thermal Protector

2.47.2 With Thermal Protector

2.48 Schematic Diagrams for Capacitor-Start Motors—Reversible

2.48.1 Single-Voltage Capacitor-Start Motors—Reversible

2.48.1.1 Without Thermal Protector

2.48.1.2 With Thermal Protector

2.48.2 Dual-Voltage Capacitor-Start Motors—Reversible

2.49 Schematic Diagrams for Two-Value Capacitor Motors—Single Voltage—Reversible

2.49.1 Without Thermal Protector

2.49.2 With Thermal Protector

2.50 Schematic Diagrams for Permanent-Split Capacitor Motors—Single Voltage—Reversible

2.51 Schematic Diagrams for Universal Motors—Single Voltage
2.52 Schematic Diagrams for Repulsion, Repulsion-Start Induction, and Repulsion-Induction Motors ... 2-26

2.53 Shaded-Pole Motors – Two Speed .. 2-27

Figure 2-47 ... 2-27

2.60 General Principles for Terminal Markings for Polyphase Induction Motors .. 2-27

2.60.1 Method of Marking ... 2-27

Figure 2-48A Clockwise Rotating Spiral with T1 at the Outer End 2-27

Figure 2-48B Clockwise Rotating Spiral with U1 at the Outer End, Same as 2-48A Except Using Terminal Markings in Accordance with Iec 60034-8 2-28

2.60.2 Three-Phase, Two Speed Motors .. 2-28

2.60.3 Two-Phase Motors .. 2-28

2.61 Terminal Markings for Three-Phase Single-Speed Induction Motors ... 2-29

2.61.1 First ... 2-29

2.61.2 Second ... 2-29

2.61.3 Third ... 2-29

2.61.4 Fourth ... 2-29

2.61.5 Fifth .. 2-29

2.61.6 Sixth .. 2-29

2.62 Terminal Markings for Y- and Delta-Connected Dual Voltage Motors .. 2-30

2.63 Terminal Markings for Three-Phase Two-Speed Single-Winding Induction Motors .. 2-30

2.64 Terminal Markings for Y- and Delta-Connected Three-Phase Two-Speed Single-Winding Motors .. 2-30

Figure 2-57 Terminal Markings for Two Circuits Per Phase, Delta Connected .. 2-33

Figure 2-58 Variable Torque Motors for One or More Windings .. 2-34

Figure 2-59 Constant Torque Motors for Single Winding Only .. 2-34

Figure 2-60 Constant Torque Motors for Two or More Independent Windings .. 2-34

Figure 2-61 Constant Horsepower Motors for Two or More Independent Windings .. 2-34

Figure 2-62 Constant Horsepower Motors for Single Winding Only .. 2-35

Figure 2-63 Three-Speed Motor Using Three Windings .. 2-35

Figure 2-64 Four-Speed Motor Using Two Windings .. 2-36

2.65 Terminal Markings for Three-Phase Induction Motors Having Two or More Synchronous Speeds Obtained From Two or More Independent Windings .. 2-36

2.65.2 Each Independent Winding Reconnectible to Give Two Synchronous Speeds .. 2-36

2.65.3 Two or More Independent Windings at Least One of Which Gives One Synchronous Speed and the Other Winding Gives Two Synchronous Speeds .. 2-37

© 2016 National Electrical Manufacturers Association
Table 4-1 Letter Symbols for Dimension Sheets .. 4-1
Figure 4-1 Letter Symbols for Foot-Mounted Machines—Side View 4-6
Figure 4-2 Letter Symbols for Foot-Mounted Machines—Drive End View 4-7
Figure 4-3 Letter Symbols for Type C Face-Mounting Foot or Footless Machine 4-8
Figure 4-4 Letter Symbols for Type D Flange-Mounting Foot or Footless Machines 4-9
Figure 4-5 Letter Symbols for Vertical Machines .. 4-10
4.2 System for Designating Frames ... 4-11
 4.2.1 Frame Numbers ... 4-11
Table 4-2 Machine Frame Numbering .. 4-11
 4.2.2 Frame Letters .. 4-12
4.3 Motor Mounting and Terminal Housing Location .. 4-14
 Figure 4-6 Machine Assembly Symbols ... 4-15
 4.4.1 Dimensions for Alternating-Current Foot-Mounted Machines with Single Straight-Shaft Extension ... 4-16
 4.4.2 Shaft Extensions and Key Dimensions for Alternating-Current-Foot-Mounted Machines with Single Tapered or Double Straight/Tapered Shaft Extension ... 4-18
 4.4.3 Shaft Extension Diameters and Key Dimensions for Alternating-Current Motors Built In Frames Larger than the 449T Frames .. 4-20
 4.4.4 Dimensions for Type C Face-Mounting Foot or Footless Alternating-Current Motors ... 4-20
 4.4.5 Dimensions for Type FC Face Mounting for Accessories on End Opposite Drive End of Alternating-Current Motors ... 4-21
 4.4.6 Dimensions for Type D Flange-Mounting Foot or Footless Alternating-Current Motors ... 4-23
4.5 Dimensions—DC Machines .. 4-24
 4.5.1 Dimensions for Direct-Current Small Motors with Single Straight Shaft Extension ... 4-24
 4.5.2 Dimensions for Foot-Mounted Industrial Direct-Current Machines 4-24
 4.5.3 Dimensions for Foot-Mounted Industrial Direct-Current Motors 4-28
 4.5.4 Dimensions for Type C Face-Mounting Direct-Current Small Motors 4-30
 4.5.5 Dimensions for Type C Face-Mounting Industrial Direct-Current Motors 4-30
 4.5.6 Dimensions for Type C Face-Mounting Industrial Direct-Current Motors 4-31
 4.5.7 Dimensions for Type D Flange-Mounting Industrial Direct-Current Motors 4-32
 4.5.8 Base Dimensions for Types P and PH Vertical Solid-Shaft Industrial Direct-Current Motors ... 4-33
4.6 Shaft Extension Diameters for Universal Motors .. 4-33
4.7 Tolerance Limits in Dimensions ... 4-34
4.8 Knockout and Clearance Hole Diameter for Machine Terminal Boxes 4-34
4.9 Tolerances on Shaft Extension Diameters and Keyseats 4-34
 4.9.1 Shaft Extension Diameter ... 4-34
© 2016 National Electrical Manufacturers Association
4.9.2 Keyseat Width ... 4-34
4.9.3 Bottom of Keyseat to Shaft Surface .. 4-35
4.9.4 Parallelism of Keyseats to Shaft Centerline 4-35
4.9.5 Lateral Displacement of Keyseats .. 4-35
4.9.6 Diameters and Keyseat Dimensions .. 4-35
4.9.7 Shaft Runout .. 4-36
Figure 4-7 Keyseat Lateral Displacement and Parallelism 4-36
Table 4-3 Cylindrical Shaft Extension Diameters and Keyseat Dimensions for Square Keys .. 4-37
4.9.8 Shaft Extension Key(s) .. 4-38
4.10. Ring Groove Shaft Keyseats for Vertical Shaft Motors 4-38
Table 4-4 .. 38
4.11 Method of Measurement of Shaft Runout and of Eccentricity and Face Runout of Mounting Surfaces .. 4-38
4.11.1 Shaft Runout .. 4-38
4.12 Tolerances for Type C Face Mounting and Type D Flange Mounting Motors .. 4-39
Table 4-5 Maximum Eccentricity of Mounting Rabbet 4-39
Table 4-6 Maximum Eccentricity of Mounting Rabbet 4-39
4.14 Mounting Bolts or Studs ... 4-39
Figure 4-8 Shaft Runout ... 4-39
Figure 4-9 Shaft Runout ... 4-39
Figure 4-10 Eccentricity and Face Runout of Mounting Surfaces 4-40
4.15 Method to Check Coplanarity of Feet of Fully Assembled Motors 4-40
4.16 Method of Measurement of Shaft Extension Parallelism to Foot Plane .. 4-40
4.17 Measurement of Bearing Temperature 4-41
4.18 Terminal Connections for Small Motors 4-41
4.18.1 Terminal Leads .. 4-41
4.18.2 Blade Terminals .. 4-41
4.19 Motor Terminal Houseings ... 4-41
4.19.1 Small and Medium Motors ... 4-41
4.19.2 Dimensions .. 4-42
Table 4-6 .. 45
Figure 4-11 Type II Machine Terminal Housing Stand-Off-Insulator-Supported Insulated or Uninsulated Terminations 4-46
4.20 Grounding Means for Field Wiring ... 4-47
Table 4-7 Minimum Size Grounding Conductor Termination 4-48
Section I General Standards Applying to All Machines

Part 5 Rotating Electrical Machines—Classification of Degrees of Protection Provided by Enclosures for Rotating Machines

5.1 Scope .. 5-1

5.2 Designation ... 5-1
 5.2.1 Single Characteristic Numeral ... 5-1
 5.2.2 Supplementary Letters .. 5-1
 5.2.3 Example of Designation ... 5-2
 5.2.4 Most Frequently Used .. 5-2

5.3 Degrees of Protection—First Characteristic Numeral ... 5-2
 5.3.1 Indication of Degree of Protection ... 5-2
 5.3.2 Compliance to Indicated Degree of Protection ... 5-2
 5.3.3 External Fans .. 5-3
 5.3.4 Drain Holes .. 5-3

Table 5-1 Degrees of Protection Indicated by the First Characteristic Numeral........ 5-4

5.4 Degrees of Protection—Second Characteristic Numeral .. 5-5
 5.4.1 Indication of Degree of Protection ... 5-5
 5.4.2 Compliance to Indicated Degree of Protection ... 5-5

Table 5-2 Degrees of Protection Indicated by The Second Characteristic Numeral 5-6

5.5 Marking .. 5-6

5.6 General Requirements for Tests ... 5-7

5.7 Tests for First Characteristic Numeral .. 5-7
 Table 5-3 ... 5-8

5.8 Tests for Second Characteristic Numeral .. 5-10
 5.8.1 Test Conditions .. 5-10
 Table 5-4 Test Conditions for Second Characteristic Numeral .. 5-11
 5.8.2 Acceptance Conditions ... 5-14

5.9 Requirements and Tests for Open Weather-Protected Machines .. 5-14
 Figure 5-1 Standard Test Finger ... 5-15
 Figure 5-2 Equipment to Prove Protection Against Dust ... 5-16
 Figure 5-3 Equipment to Prove Protection Against Dripping Water 5-17
 Figure 5-4 Equipment to Prove Protection Against Spraying and Splashing Water
 Shown with Spraying Holes
 in The Case of Second Characteristic Numeral 3 .. 5-18
 Figure 5-5 Hand-Held Equipment to Prove Protection Against Spraying and
 Splashing Water .. 5-19
 Figure 5-6 Standard Nozzle for Hose Tests .. 5-20

Appendix A Most Frequently Used Degrees of Protection for Electrical Machines .. 5-20
Section I General Standards Applying to All Machines

Part 6 Rotating Electrical Machines—Methods of Cooling (Ic Code) ... 6-1

6.1 Scope .. 6-1

6.2 Definitions .. 6-1

6.2.1 Cooling ... 6-1

6.2.2 Coolant .. 6-1

6.2.3 Primary Coolant ... 6-1

6.2.4 Secondary Coolant ... 6-1

6.2.5 Final Coolant .. 6-1

6.2.6 Surrounding Medium ... 6-2

6.2.7 Remote Medium ... 6-2

6.2.8 Direct Cooled Winding (Inner Cooled Winding) ... 6-2

6.2.9 Indirect Cooled Winding .. 6-2

6.2.11 Pipe, Duct ... 6-2

6.2.12 Open Circuit .. 6-2

6.2.13 Closed Circuit .. 6-2

6.2.14 Piped or Ducted Circuit .. 6-2

6.2.15 Stand-by or Emergency Cooling System ... 6-3

6.2.16 Integral Component ... 6-3

6.2.17 Machine-Mounted Component ... 6-3

6.2.18 Separate Component ... 6-3

6.2.19 Dependent Circulation Component .. 6-3

6.2.20 Independent Circulation Component ... 6-3

6.3 Designation System ... 6-3

6.3.1 Arrangement of the IC Code .. 6-3

6.3.2 Application of Designations .. 6-4

6.3.4 Designation of Different Circuit Arrangements for Different Parts of a Machine ... 6-5

6.3.5 Designation of Direct Cooled Winding ... 6-5

6.3.6 Designation of Stand-by or Emergency Cooling Conditions 6-5

6.3.7 Combined Designations .. 6-5

6.3.8 Replacement of Characteristic Numerals .. 6-5

6.3.9 Examples of Designations and Sketches ... 6-5

6.4 Characteristic Numeral for Circuit Arrangement .. 6-6

6.5 Characteristic letters for coolant .. 6-7

6.5.1 The coolant (see 6.3.1.3 and 6.3.1.5) is designated by one of the characteristic letters in accordance with Table 6-2. ... 6-7

Table 6-1 Circuit Arrangement .. 6-6

Table 6-2 Coolant .. 6-7
6.5.2 When the single coolant is air or when in case of two coolants either one or both are air, the letter(s) “A” stating the coolant is omitted in the simplified designation.

6.5.3 for the characteristic letter “S,” the coolant shall be identified elsewhere.

6.5.4 When the coolant is finally selected, the temporarily used letter “Y” shall be replaced by the appropriate final characteristic letter.

6.6 Characteristic Numeral for Method of Movement

Table 6-3 Method of Movement

6.7 Commonly Used Designations

6.7.1 General Information on the Tables

Table 6-4 Examples of Open Circuit Using Surrounding or Remote Medium*

Table 6-5 Examples of Primary Circuits Closed, Secondary Circuits Open Using Surrounding Medium*

Table 6-6 Examples of Primary Circuits Closed, Secondary Circuits Open Using Remote or Surrounding Medium*

Section I General Standards Applying to All Machines

Part 7 Mechanical Vibration-Measurement, Evaluation and Limits

7.1 Scope

7.2 Object

7.3 References

7.4 Measurement Quantity

7.4.1 Bearing Housing Vibration

7.4.2 Relative Shaft Vibration

7.5 Measuring Equipment

7.6 Machine Mounting

7.6.1 General

7.6.2 Resilient Mounting

7.6.3 Rigid Mounting

Figure 7-1 Minimum Elastic Displacement as a Function of Nominal Test Speed for Resilient Mounting

7.6.4 Active Environment Determination

7.7 Conditions of Measurement

7.7.1 Shaft Key

7.7.2 Measurement Points for Vibration

7.7.2.1 Bearing Housing

7.7.2.2 Shaft

7.7.3 Operating Conditions

7.7.4 Vibration Transducer Mounting

Figure 7-2 Preferred Points of Measurement Applicable to One or Both Ends of the Machine
Section I General Standards Applying to All Machines

Part 9 Rotating Electrical Machines—Sound Power Limits and Measurement Procedures.... 9-1

9.1 Scope... 9-1

9.2 General ... 9-1

9.3 References... 9-1

9.4 Methods of Measurement .. 9-1

9.4.1 Sound level measurements and calculation of sound power level produced by the motor shall be in accordance with either ANSI S12.12, S12.51, S12.53, S12.54, or S12.35, unless one of the methods specified in 9.4.2 is used. ... 9-1

9.4.2 The method specified in ANSI S12.56 may be used 9-2

9.4.3 When testing under load conditions, the methods of ANSI S12.12 are preferred. However, other methods are allowed when the connected motor and auxiliary equipment are acoustically isolated or located outside the test environment .. 9-2

9.5 Test Conditions .. 9-2

9.5.1 Machine Mounting ... 9-2

9.5.2 Test Operating Conditions ... 9-2

9.6 Sound Power Level ... 9-3
9.6.1 The maximum sound power levels specified in Tables 9-1 and 9-2, or adjusted by Table 9-3, relate to measurements made in accordance with 9.4.1.

9.7 Determination of Sound Pressure Level

Table 9-1 Maximum A-Weighted Sound Power Levels, Lwa (Db), At No-Load

Table 9-2 Maximum a-weighted sound power levels lwa (db) of drip-proof industrial direct-current motors, at no-load

Table 9-3 Incremental Expected Increase Over No-Load Condition, in A-Weighted Sound Power Levels Δlwa (Db), for Rated Load Condition for Single-Speed, Three-Phase, Squirrel-Cage, Induction Motors

Table 9-4 Overview of Standards for the Determination of Sound Power Levels of Motors

Section II Small (Fractional) and Medium (Integral) Machines

Part 10 Ratings—AC Small and Medium Motors

10.0 Scope

10.30 Voltages

10.31 Frequencies

10.31.1 Alternating-Current Motors

10.31.2 Universal Motors

Table 10-1 Horsepower and Speed Ratings, Small Induction Motors

10.32 Horsepower and Speed Ratings

10.32.1 Small Induction Motors, Except Permanent-Split Capacitor Motors Rated 1/3 Horsepower and Smaller and Shaded-Pole Motors

10.32.2 Small Induction Motors, Permanent-Split Capacitor Motors Rated 1/3 Horsepower and Smaller and Shaded-Pole Motors

Table 10-2 Horsepower and Speed Ratings, Permanent-Split Capacitor and Shaded Pole Motors

10.32.3 Single-Phase Medium Motors

Table 10-3 Horsepower and Speed Ratings, Medium Motors

10.32.4 Polyphase Medium Induction Motors

Table 10-4* Horsepower and Speed Ratings, Polyphase Medium Induction Motors

10.32.5 Universal Motors

10.33 Horsepower Ratings of Multispeed Motors

10.33.1 Constant Horsepower

10.33.2 Constant Torque

10.33.3 Variable Torque

10.34 Basis of Horsepower Rating

10.34.1 Basis of Rating

10.34.2 Temperature

10.34.3 Minimum Breakdown Torque
Table 10-5 Breakdown Torque for Single Phase Induction Motors, Except
Shaded-Pole and Permanent-Split Capacitor Motors 10-7
Table 10-6 Breakdown Torque for Shaded-Pole and Permanent-Split Capacitor
Motors for Fan and Pump Applications
(for permanent-split capacitor hermetic motors, see 18.7) 10-9
10.35 Secondary Data for Wound-Rotor Motors 10-10
10.36 Time Ratings for Single-Phase and Polyphase Induction Motors 10-10
10.37 Code Letters (for Locked-Rotor kVA) .. 10-10
10.37.1 Nameplate Marking ... 10-10
10.37.2 Letter Designation ... 10-10
10.37.3 Multispeed Motors ... 10-11
10.37.4 Single-Speed Motors ... 10-11
10.37.5 Broad- or Dual-Voltage Motors .. 10-11
10.37.6 Dual-Frequency Motors ... 10-11
10.37.7 Part-Winding-Start Motors ... 10-11
10.38 Nameplate Temperature Ratings for Alternating-Current Small and
Universal Motors .. 10-11
10.39.1 Alternating-Current Single-Phase and Polyphase Squirrel-Cage Motors,
10.39.2 Motors Rated Less Than 1/20 Horsepower 10-12
10.39.3 Universal Motors ... 10-13
10.39.4 Motors Intended for Assembly in a Device Having its Own Markings 10-13
10.40 Nameplate Marking for Medium Single-Phase and Polyphase Induction Motors ... 10-14
10.40.1 Medium Single-Phase and Polyphase Squirrel-Cage Motors 10-14
10.40.2 Polyphase Wound-Rotor Motors ... 10-15

Section II Small (Fractional) and Medium (Integral) Machines

Part 10 Ratings—DC Small and Medium Machines 10-17
10.0 Scope .. 10-17
10.60 Basis of Rating ... 10-17
10.60.1 Small Motors .. 10-17
10.60.2 Medium Motors .. 10-17
10.61 Power Supply Identification for Direct-Current Medium Motors 10-17
10.61.1 Supplies Designated by a Single Letter 10-17
10.61.2 Other Supply Types ... 10-17
10.62 Horsepower, Speed, and Voltage Ratings ... 10-18
10.62.1 Direct-Current Small Motors .. 10-18
Table 10-7 Motor Ratings for Operation from Rectified Power Supplies 10-19

© 2016 National Electrical Manufacturers Association
10.62.2 Industrial Direct-Current Motors

Table 10-8 Horsepower, Speed, and Voltage Ratings for Industrial Direct-Current Motors—180 Volts Armature Voltage Rating*, Power Supply K

10.63 Nameplate Time Rating

10.64 Time Rating for Intermittent, Periodic, and Varying Duty

10.65 Nameplate Maximum Ambient Temperature and Insulation System Class

Table 10-9 Horsepower, Speed, and Voltage Ratings for Industrial Direct-Current Motors—240 Volts Armature Voltage Rating, Power Supply A, C, D, or E

Table 10-10 22 Horsepower, Speed, and Voltage Ratings for Industrial Direct-Current Motors - 500 or 550* Volts Armature Voltage Rating, Power Supply A, C, or D

10.66 Nameplate Marking

10.66.1 Small Motors Rated 1/20 Horsepower and Less

10.66.2 Small Motors Except Those Rated 1/20 Horsepower and Less

10.66.3 Medium Motors

Section II Small (Fractional) and Medium (Integral) Machines

Part 12 Tests and Performance—AC and DC Motors

12.0 Scope

12.2 High-Potential Test—Safety Precautions and Test Procedure

12.3 High-Potential Test Voltages for Universal, Induction, and Direct-Current Motors

12.4 Production High-Potential Testing of Small Motors

12.4.1 Dielectric Test Equipment

12.4.2 Evaluation of Insulation Systems by a Dielectric Test

12.5 Repetitive Surge Test for Small and Medium Motors

12.6 Mechanical Vibration

12.7 Bearing Losses—Vertical Pump Motors

Section II Small (Fractional) and Medium (Integral) Machines

Part 12 Tests and Performance—AC Motors

12.0 Scope

12.30 Test Methods

12.31 Performance Characteristics

12.32 Torque Characteristics of Single-Phase General-Purpose Induction Motors

12.31.1 Breakdown Torque

12.32.2 Locked-Rotor Torque of Small Motors

12.32.3 Locked-Rotor Torque of Medium Motors
12.32.4 Pull-Up Torque of Medium Motors ... 12-6
12.33 Locked-Rotor Current of Single-Phase Small Motors .. 12-6
 12.33.1 Design O and Design N Motors ... 12-6
 12.33.2 General-Purpose Motors .. 12-7
12.34 Locked-Rotor Current of Single-Phase Medium Motors, Designs L and M 12-7
12.35 Locked-Rotor Current of 3-Phase Small and Medium Squirrel-Cage Induction Motors .. 12-7
 12.35.1 60-Hertz Design B, C, and D Motors at 230 Volts 12-7
 12.35.2 50-Hertz Design B, C, and D Motors at 380 Volts 12-8
Table 12-1 Maximum Locked-Rotor Current for 50-Hz Design B, C, and D Motors at 380 Volts .. 12-9
12.36 Instantaneous Peak Value of Inrush Current ... 12-10
12.37 Torque Characteristics of Polyphase Small Motors ... 12-10
12.38 Locked-Rotor Torque of Single-Speed Polyphase Squirrel-Cage Medium Motors With Continuous Ratings ... 12-10
 12.38.1 Design A and B Motors .. 12-10
 Table 12-2 Locked-Rotor Torque of Design A and B, 60- and 50-Hertz Single-Speed Polyphase Squirrel-Cage Medium Motors 12-10
 12.38.2 Design C Motors ... 12-11
 Table 12-3 Locked-Rotor Torque of Design C Motors ... 12-11
 12.38.3 Design D Motors ... 12-11
12.39 Breakdown Torque of Single-Speed Polyphase Squirrel-Cage Medium Motors With Continuous Ratings ... 12-11
 12.39.1 Design A and B Motors .. 12-12
 12.39.2 Design C Motors ... 12-12
12.40 Pull-Up Torque of Single-Speed Polyphase Squirrel-Cage Medium Motors With Continuous Ratings ... 12-13
 12.40.1 Design A and B Motors .. 12-13
 12.40.2 Design C Motors ... 12-14
12.41 Breakdown Torque of Polyphase Wound-Rotor Medium Motors With Continuous Ratings .. 12-15
12.42 Temperature Rise for Small and Universal Motors .. 12-15
 12.42.1 Alternating-Current Small Motors—Motor Nameplates Marked with Insulation System Designation and Ambient Temperature 12-16
 12.42.2 Universal Motors .. 12-16
 12.42.3 Temperature Rise for Ambients Higher than 40°C 12-17
 12.42.4 Temperature Rise for Air-Cooled Machines for Ambients Lower than 40°C, but Not Below 0°C ... 12-17
12.43 Temperature Rise for Medium Single-Phase and Polyphase Induction Motors .. 12-18
 12.43.1 Temperature Rise for Ambients Higher than 40°C 12-19

© 2016 National Electrical Manufacturers Association
12.43.2 Temperature Rise for Air-Cooled Machines for Ambients Lower than 40°C, but Not Below 0°C* ... 12-19
12.44 Variation From Rated Voltage and Rated Frequency .. 12-20
 12.44.1 Running ... 12-20
 12.44.2 Starting ... 12-21
12.45 Voltage Unbalance .. 12-21
12.46 Variation From Rated Speed ... 12-21
12.47 Nameplate Amperes—Alternating-Current Medium Motors 12-21
12.48 Occasional Excess Current ... 12-21
12.49 Stall Time .. 12-21
 12.50 Performance of Medium Motors with Dual Voltage Rating 12-22
12.51 Service Factor of Alternating-Current Motors ... 12-22
 12.51.1 General-Purpose Alternating-Current Motors of the Open Type 12-22
 Table 12-4 Service Factors ... 12-22
 12.51.2 Other Motors ... 12-22
 12.52 Overspeeds for Motors ... 12-23
 12.51.1 Squirrel-Cage and Wound-Rotor Motors .. 12-23
 12.52.2 General-Purpose Squirrel-Cage Induction Motors 12-23
 Table 12-5 Continuous Speed Capability for General-Purpose Squirrel-Cage Induction Motors In Direct Coupled Applications, Except Those Motors in Table 12-6 ... 12-24
 12.52.3 General-Purpose Design A and B Direct-Coupled Squirrel-Cage Induction Motors .. 12-25
 12.52.4 Alternating-Current Series and Universal Motors 12-25
 Table 12-6 Continuous Speed Capability for General-Purpose Design A and B Direct Coupled (Ts Shaft for Motors Above The 250 Frame Size) Squirrel-Cage Induction Motors ... 12-26
12.53 Machine Sound (Medium Induction Motors) .. 12-26
12.54 Number of Starts ... 12-26
 12.54.1 Normal Starting Conditions ... 12-27
 12.54.2 Other than Normal Starting Conditions .. 12-27
 12.54.3 Considerations for Additional Starts ... 12-27
12.55 Routine Tests for Polyphase Medium Induction Motors 12-27
 12.55.1 Method of Testing ... 12-27
 12.55.2 Typical Tests on Completely Assembled Motors 12-27
 12.55.3 Typical Tests on Motors Not Completely Assembled 12-28
 Squirrel-Cage Induction Motors .. 12-28
12.56 Thermal Protection of Medium Motors ... 12-29
 12.56.1 Winding Temperature .. 12-29
 Table 12-8 Winding Temperatures .. 12-29
Table 12-9 Winding Temperature Under Locked-Rotor Conditions, Degrees C........12-30
12.56.2 Trip Current ...12-30
12.57 Overtemperature Protection of Medium Motors Not Meeting the Definition of
 “Thermally Protected” ...12-30
 12.57.1 Type 1—Winding Running and Locked Rotor Overtemperature Protection ..12-30
 12.57.2 Type 2—Winding Running Overtemperature Protection12-31
 12.57.3 Type 3—Winding Overtemperature Protection, Nonspecific Type12-31
12.58 Efficiency ...12-31
 12.58.1 Determination of Motor Efficiency and Losses12-31
 12.58.2 Efficiency of Squirrel-Cage Small and Medium Motors with
 Continuous Ratings ...12-32
 Table 12-10 ..12-34
 Efficiency Levels ...12-34
12.59 Efficiency Levels of Energy Efficient Polyphase Squirrel-Cage Random
 Wound Induction Motors Rated 600 Volts or Less At 60 Hz12-35
12.60 Efficiency Levels of Premium Efficiency Electric Motors12-35
 12.60.1 Random Wound Electric Motors Rated 600 Volts or Less12-35
 12.60.1.1 Single-Phase Capacitor-Start Induction-Run Small Motors12-35
 12.60.2 60 Hz Motors Rated Medium Voltage, 5000 Volts or Less (Form Wound) ..12-36
 12.60.3 50 Hz Motors Rated 600 Volts or Less (Random Wound)12-36
 Table 12-11 Full-Load Efficiencies of Energy Efficient Motors (Random Wound)......12-37
 Table 12-12 Full-Load Efficiencies for 60 Hz Premium Efficiency Electric Motors
 Rated 600 Volts or Less (Random Wound) ..12-39
 Table 12-13 Full-Load Efficiencies for 60 Hz Premium Efficiency Electric Motors
 Rated 5000 Volts or Less (Form Wound) ..12-41
 Table 12-14 Full-Load Efficiencies for 50 Hz Premium Efficiency Electric Motors
 Rated 600 Volts or Less (Random Wound) ..12-42
 Table 12-15 kW Full-Load Efficiencies of 60Hz Energy Efficient Motors
 (Random Wound) ...12-43
 Table 12-16 KW Full-Load Efficiencies for 60 Hz Premium Efficiency Electric
 Motors Rated 600 Volts or Less (Random Wound)12-45
 Table 12-17 kW Full-Load Efficiencies for 60 Hz Premium Efficiency Electric
 Motors Rated 5000 Volts or Less (Form Wound)12-47
 Table 12-18 KW Full-Load Efficiencies for 50 Hz Premium Efficiency Electric
 Motors Rated 600 Volts or Less (Random Wound)12-48
 Table 12-19 Premium Efficiency Levels for Capacitor-Start/Induction-Run
 Single-Phase 48 and 56 Frame Motors ...12-49
 Table 12-20 Premium Efficiency Levels for Capacitor-Start/Capacitor-Run
 Single-Phase 48 and 56 Frame Motors ...12-49
 Table 12-21 Premium Efficiency Levels for Three-Phase Induction 48 and 56
 Frame Motors ...12-50
12.61 Report of Test for Tests on Induction Motors ..12-50
12.62 Machine with Encapsulated or Sealed Windings—Conformance Tests12-50
12.63 Machine with Moisture Resistant Windings—Conformance Test12-51
Section II Small (Fractional) and Medium (Integral) Machines

Part 12 Tests and Performance—DC Small and Medium Motors... 12-52

12.0 Scope.. 12-52
12.65 Test Methods ... 12-52
12.66 Test Power Supply ... 12-52
12.66.1 Small Motors ... 12-52
12.66.2 Medium Motors ... 12-52
12.66.2.1 Low-Ripple Power Supplies—Power Supply A .. 12-52
Figure 12-1 Test Power Supplies .. 12-53
12.67 Temperature Rise ... 12-54
12.67.1 Direct-Current Small Motors ... 12-54
12.67.2 Continuous-Time-Rated Direct-Current Medium Motors ... 12-54
12.67.3 Short-Time-Rated Direct-Current Medium Motors ... 12-55
12.67.4 Temperature Rise for Ambients Higher than 40ºC ... 12-56
12.67.5 Temperature Rise for Air-Cooled Machines for Ambients Lower than 40ºC, but Not Below 0ºC* ... 12-56
12.68 Variation from Rated Voltage .. 12-57
12.69 Variation in Speed Due to Load .. 12-57
12.69.1 Straight-Shunt-Wound, Stabilized-Shunt-Wound, and Permanent-Magnet Direct-Current Motors ... 12-57
12.69.2 Compound-Wound Direct-Current Motors .. 12-58
12.70 Variation in Base Speed Due To Heating .. 12-58
12.70.1 Speed Variation with Temperature .. 12-58
12.70.2 Resistance Variation with Temperature .. 12-58
12.71 Variation From Rated Speed .. 12-59
12.72 Momentary Overload Capacity ... 12-59
12.73 successful commutation ... 59
12.74 Overspeeds for Motors .. 12-59
12.74.1 Shunt-Wound Motors ... 12-59
12.74.2 Compound-Wound Motors Having Speed Regulation of 35 Percent or Less 12-59
12.75 Field Data for Direct-Current Motors ... 12-59
12.76 Routine Tests on Medium Direct-Current Motors .. 12-59
12.77 report of test form for direct-current machines .. 12-60
12.78 Efficiency ... 12-60
12.78.1 Type A Power Supplies ... 12-60
12.78.2 Other Power Supplies .. 12-61
12.79 Stability .. 12-61
12.80 Over Temperature Protection of Medium Direct-Current Motors 12-61
12.81 Data for Direct-Current Motors .. 12-62
12.82 Machine Sound of Direct-Current Medium Motors .. 12-63

Section II Small (Fractional) and Medium (Integral) Machines

Part 13 Frame Assignments for Alternating Current Integral Horsepower Induction Motors ... 13-1
13.0 Scope .. 13-1
13.1 Frame Designations for Single-Phase Design L, Horizontal, and Vertical Motors, 60 Hertz, Class B Insulation System, Open Type, 1.15 Service Factor, 230 Volts and Less .. 13-1
13.2 Frame Designations for Polyphase, Squirrel-Cage, Designs A and B, Horizontal and Vertical Motors, 60 Hertz, Class B Insulation System, Open Type, 1.15 Service Factor, 575 Volts and Less* .. 13-2
13.3 Frame Designations for Polyphase, Squirrel-Cage, Designs A and B, Horizontal and Vertical Motors, 60 Hertz, Class B Insulation System, Totally Enclosed Fan-Cooled Type, 1.0 Service Factor, 575 Volts and Less* .. 13-3
13.4 Frame Designations for Polyphase, Squirrel-Cage, Design C, Horizontal and Vertical Motors, 60 Hertz, Class B Insulation System, Open Type, 1.15 Service Factor, 575 Volts and Less* .. 13-4
13.5 Frame Designations for Polyphase, Squirrel-Cage, Design C, Horizontal and Vertical Motors, 60 Hertz, Class B Insulation System, Totally Enclosed Fan-Cooled Type, 1.0 Service Factor, 575 Volts and Less* .. 13-5

Section II Small (Fractional) and Medium (Integral) Machines

Part 14 Application Data—AC and DC Small and Medium Machines ... 14-1
14.0 Scope .. 14-1
14.1 Proper Selection of Apparatus .. 14-1

Application Data ... 14-2
14.2 Usual Service Conditions .. 14-2
14.2.1 Environmental Conditions .. 14-2
 14.2.2 Operating Conditions .. 14-2
14.3 Unusual Service Conditions .. 14-2
14.4 Temperature Rise .. 14-2
 14.4.1 Ambient Temperature at Altitudes for Rated Temperature Rise 14-2
 14.4.2 Motors with Service Factor .. 14-4
 14.4.3 Temperature Rise at Sea Level .. 14-4
 14.4.4 Preferred Values of Altitude for Rating Motors ... 14-4

© 2016 National Electrical Manufacturers Association
14.5 Short-Time Rated Electrical Machines .. 14-4
14.6 Direction of Rotation .. 14-4
14.7 Application of Pulleys, Sheaves, Sprockets, and Gears on Motor Shafts 14-5
 14.7.1 Mounting ... 14-5
 14.7.2 Minimum Pitch Diameter for Drives Other Than V-Belt 14-5
 14.7.3 Maximum Speed of Drive Components ... 14-5
14.8 Through-Bolt Mounting ... 14-5
14.9 Rodent Protection .. 14-6

Section II Small (Fractional) and Medium (Integral) Machines

Part 14 Application Data—AC Small and Medium Motors 14-7
14.0 Scope .. 14-7
14.30 Effects of Variation of Voltage and Frequency Upon the Performance of Induction Motors ... 14-7
 14.30.1 General ... 14-7
 14.30.2 Effects of Variation in Voltage on Temperature 14-7
 14.30.3 Effect of Variation in Voltage on Power Factor 14-7
 14.30.4 Effect of Variation in Voltage on Starting Torques 14-7
 14.30.5 Effect of Variation in Voltage on Slip ... 14-7
 14.30.6 Effects of Variation in Frequency .. 14-8
 14.30.7 Effect of Variations in Both Voltage and Frequency 14-8
 14.30.8 Effect on Special-Purpose or Small Motors 14-8
14.31 Machines Operating on an Ungrounded System 14-8
14.32 Operation of Alternating Current Motors from Variable-Frequency or Variable-Voltage Power Supplies, or Both ... 14-8
 14.32.1 Performance .. 14-8
 14.32.2 Shaft Voltages .. 14-9
14.33 Effects of Voltages Over 600 Volts on the Performance of Low-Voltage Motors 14-9
14.34 Operation of General-Purpose Alternating-Current Polyphase, 2-, 4-, 6-, and 8-Pole, 60-Hertz Medium Induction Motors Operated on 50 Hertz .. 14-9
 14.34.1 Speed ... 14-10
 14.34.2 Torques ... 14-10
 14.34.3 Locked-Rotor Current ... 14-10
 14.34.4 Service Factor .. 14-10
 14.34.5 Temperature Rise ... 14-10
14.35 Operation of 230-Volt Induction Motors on 208-Volt Systems 14-10
 14.35.1 General ... 14-10
 14.35.2 Nameplate Marking of Useable @ 200 V 14-10
 14.35.3 Effects on Performance of Motor .. 14-10
14.36 Effects of Unbalanced Voltages on The Performance of Polyphase Induction Motors

Figure 14-1 Medium Motor Derating Factor Due to Unbalanced Voltage

14.36.1 Effect on Performance—General

14.36.2 Unbalance Defined

14.36.3 Torques

14.36.4 Full-Load Speed

14.36.5 Currents

14.37 Application of Alternating-Current Motors With Service Factors

14.37.1 General

14.37.2 Temperature Rise—Medium Alternating-Current Motors

14.37.3 Temperature Rise—Small Alternating-Current Motors

14.38 Characteristics of Part-Winding-Start Polyphase Induction Motors

14.39 Coupling End-Play and Rotor Float for Horizontal Alternating-Current Motors

14.39.1 Preferred Ratings for Motors with Ball Bearings

14.39.2 Limits for Motors with Sleeve Bearing

14.39.3 Drawing and Shaft Markings

14.40 Output Speeds for Medium Gear Motors of Parallel Construction

14.41 Application of Medium Alternating-Current Squirrel-Cage Machines with Sealed Windings

14.41.1 Usual Service Conditions

14.41.2 Unusual Service Conditions

14.41.3 Hazardous Locations

14.42 Application of V-Belt Sheaves to Alternating Current Motors Having Antifriction Bearings

14.42.1 Dimensions

14.42.2 Radial Overhung Load Limitations

14.43 Aseismatic Capability

Table 14-1 Medium Motors—Polyphase Induction

Table 14-1A Shaft Loading for AC Induction Horizontal Motors with Ball Bearings - Maximum Radial Overhung Load, in Pounds, at Center of N-W Dimension

14.44 Power Factor of Three-Phase, Squirrel-Cage, Medium Motors with Continuous Ratings

14.44.1 Determination of Power Factor from Nameplate Data

14.44.2 Determination of Capacitor Rating for Correcting Power Factor to Desired Value

14.44.3 Determination of Corrected Power Factor for Specified Capacitor Rating

14.44.4 Application of Power Factor Correction Capacitors on Power Systems

14.44.5 Application of Power Factor Correction Capacitors on Motors Operated from Electronic Power Supply
14.45 Bus Transfer or Reclosing .. 14-20
14.46 Rotor Inertia for Dynamic Braking .. 14-20
14.47 Effects of Load on Motor Efficiency .. 14-20
14.48 Reed Frequency of Vertical Machines .. 14-20

Figure 14-2 Typical Efficiency Versus Load Curves for 1800-Rpm Three-Phase
60-Hertz Design B Squirrel-Cage Induction Motors 14-21

Section II Small (Fractional) and Medium (Integral) Machines

Part 14 Application Data—DD Small and Medium Motors 14-23
14.0 Scope ... 14-23
14.60 Operation of Small Motors on Rectified Alternating Current 14-23
 14.60.1 General .. 14-23
 14.60.2 Form Factor .. 14-23
 Table 14-2 Recommended Rated Form Factors 14-24
14.61 Operation of Direct-Current Medium Motors On Rectified Alternating Current .. 14-24
14.62 Armature Current Ripple .. 14-25
14.63 Operation on a Variable-Voltage Power Supply 14-25
14.64 Shunt Field Heating at Standstill .. 14-26
14.65 Bearing Currents .. 14-26
14.66 Effect of 50-Hertz Alternating-Current Power Frequency 14-26
14.67 Application Overhung Loads to Motor Shafts 14-27
 14.67.1 Limitations .. 14-27
 Figure 14-3 Shaft Loading for DC Motors Having “At” Frame Designation—
 Radial Overhung Load—End of Shaft .. 14-28
 14.67.2 V-Belt Drives .. 14-28
 14.67.3 Applications Other Than V-Belts ... 14-29
 14.67.4 General .. 14-29
14.68 Rate of Change of Armature Current .. 14-30

Section II Small (Fractional) and Medium (Integral) Machines

Part 15 DC Generators .. 15-1
15.0 Scope ... 15-1
15.10 Kilowatt, Speed, and Voltage Ratings .. 15-1
 15.10.1 Standard Ratings .. 15-1
 Table 15-1 Kilowatt, Speed, and Voltage Ratings 15-1
 15.10.2 Exciters .. 15-2
15.11 Nameplate Time Rating, Maximum Ambient Temperature, and
Insulation System Class... 15-2

15.12 Nameplate Marking... 15-2

Tests and Performance.. 15-3

15.40 Test Methods.. 15-3
15.41 Temperature Rise.. 15-3
 15.41.1 Temperature Rise for Maximum Ambient of 40º C............... 15-3
 15.41.2 Temperature Rise for Ambients Higher than 40º C............. 15-3
 15.41.3 Temperature Rise for Air-Cooled Machines for Ambients Lower than 40º C, but Not Below 0º C*............................... 15-3
15.42 Successful Commutation... 15-4
15.44 Voltage Variation Due to Heating... 15-4
15.45 Flat Compounding... 15-5
15.46 Test for Regulation... 15-5
15.47 Overspeeds for Generators.. 15-5
15.48 High-Potential Test... 15-5
 15.48.1 Safety Precautions and Test Procedure.............................. 15-5
 15.48.2 Test Voltage... 15-5
15.49 Routine Tests.. 15-5
15.50 Field Data for Direct-Current Generators.............................. 15-6
15.51 Report of Test Form.. 15-6
15.52 Efficiency... 15-6

Manufacturing.. 15-7

15.60 Direction of Rotation.. 15-7
15.61 Equalizer Leads of Direct-Current Generators....................... 15-7

Section II Small (Fractional) and Medium (Integral) Machines

Part 18 Definite Purpose Machines... 18-1
18.1 Scope.. 18-1

Motors for Hermetic Refrigeration Compressors............................ 18-1
18.2 Classification According To Electrical Type........................... 18-1

Ratings... 18-2
18.3 Voltage ratings... 18-2
 18.3.1 Single-Phase Motors... 18-2
18.3.2 Polyphase Induction Motors.......................... 18-2
18.4 Frequencies.. 18-2
18.5 Speed Ratings.. 18-2

Tests and Performance... 18-2
18.6 Operating Temperature................................. 18-2
18.7 breakdown torque and locked-rotor current of 60-hertz hermetic motors.. 18-2
18.7.1 Breakdown Torque................................. 18-2
18.7.2 Locked-Rotor Current............................... 18-2
18.8 High-Potential Test..................................... 18-4
18.9 Variations from Rated Voltage and Rated Frequency... 18-4
18.10 Direction of Rotation 18-4
18.11 Terminal Lead Markings................................. 18-4

18.12 Method of Test for Cleanliness of Single-Phase Hermetic Motors Having Stator Diameters of 6.292 Inches and Smaller.. 18-4
18.12.1 Stators.. 18-5
18.12.2 Rotors.. 18-5

18.13 Method of Test for Cleanliness of Hermetic Motors Having Stator Diameters of 8.777 Inches and Smaller... 18-5
18.13.1 Purpose.. 18-5
18.13.2 Description... 18-5
18.13.3 Sample Storage..................................... 18-5
18.13.4 Equipment... 18-5
18.13.5 Procedure... 18-6

Manufacturing.. 18-7
18.14 Rotor Bore Diameters and Keyway Dimensions for 60-Hertz Hermetic Motors.......................... 18-7
18.15 Dimensions for 60-Hertz Hermetic Motors... 18-7
18.16 Forming of End Wire..................................... 18-8
18.17 Thermal Protectors Assembled on or in End Windings of Hermetic Motors.......................... 18-8
18.18 Lettering of Dimensions for Hermetic Motors for Hermetic Compressors.......................... 18-9

18.19 Classification According To Electrical Type... 18-11
Small Motors for Shaft-Mounted Fans and Blowers__ 18-11

18.20 Voltage Ratings.. 18-11
18.20.1 Single-Phase Motors.............................. 18-11
18.20.2 Polyphase Induction Motors ... 18-11
18.21 Frequencies .. 18-11
18.22 Horsepower and Speed Ratings ... 18-11
 18.22.1 Single-Speed Motors .. 18-11
 18.22.2 Two-Speed Motors .. 18-11

Tests and Performance .. 18-12
 18.23 Temperature Rise .. 18-12
 18.24 Basis of Horsepower Rating ... 18-12
 18.25 Maximum Locked-Rotor Current—Single-Phase 18-12
 18.26 High-Potential Tests ... 18-12
 18.27 Variations from Rated Voltage and Rated Frequency 18-12
 18.28 Direction of Rotation ... 18-12

Manufacturing .. 18-12
 18.29 General Mechanical Features .. 18-12
 18.30 Dimensions and Lettering of Dimensions for Motors for Shaft-Mounted
 Fans and Blowers ... 18-13
 18.31 Terminal Markings ... 18-13
 18.32 Terminal Lead Lengths ... 18-13

Small Motors for Belted Fans and Blowers Built in Frames 56 and Smaller 18-15
 18.33 Classification According to Electrical Type ... 18-15

Ratings .. 18-15
 18.34 Voltage Ratings .. 18-15
 18.34.1 Single-Phase Motors ... 18-15
 18.34.2 Polyphase Motors .. 18-15
 18.35 Frequencies .. 18-15
 18.36 Horsepower and Speed Ratings .. 18-15
 18.36.1 Single-Speed Motors ... 18-15
 18.36.2 Two-Speed Motors ... 18-15

Tests and Performance .. 18-16
 18.37 Temperature Rise .. 18-16
 18.38 Basis of Horsepower Rating ... 18-16
18.39 Maximum Locked-Rotor Current ... 18-16
18.40 High-Potential Test .. 18-16
18.41 Variations from Rated Voltage and Rated Frequency .. 18-16
18.42 Direction of Rotation ... 18-16

Manufacturing .. 18-16

18.43 General Mechanical Features .. 18-16
18.44 Lettering of Dimensions for Motors for Belted Fans and Blowers 18-17
 Figure 18-5 Lettering of Dimensions .. 18-17
18.45 Classification According to Electrical Type ... 18-17

RATINGS ... 18-17

18.46 Voltage Ratings .. 18-17
18.47 Frequencies ... 18-17
18.48 Horsepower and Speed Ratings .. 18-17
 18.48.2 Speed Ratings .. 18-18

Tests and Performance .. 18-18

18.49 Temperature Rise .. 18-18
18.50 Basis of Horsepower Ratings .. 18-18
18.51 High-Potential Tests ... 18-18
18.52 Variations from Rated Voltage and Rated Frequency ... 18-18
18.53 Variation from Rated Speed .. 18-18
18.54 Terminal Markings—Multispeed Shaded-Pole Motors ... 18-19

Manufacturing .. 18-19

18.55 Terminal Markings .. 18-19
18.56 Terminal Lead Lengths ... 18-19
18.57 General Mechanical Features .. 18-19
18.58 Terminal Markings for Non-Pole-Changing Multispeed Single-Voltage Nonreversible Permanent-Split Capacitor Motors and Shaded Pole Motors 18-20
 18-6a ... 18-20
 18-6b ... 18-20
 18-6c ... 18-20
 18-6d ... 18-20
 Figure 18-6 Terminal Markings ... 20
 18-6E ... 18-21
 8-6F ... 18-21

© 2016 National Electrical Manufacturers Association
18.59 Dimensions of Shaded-Pole and Permanent-Split Capacitor Motors Having
A P Dimension 4.38 Inches and Larger ... 18-21
 Figure 18-7 Dimensions .. 18-22
18.60 Dimensions of Shaded-Pole and Permanent Split Capacitor Motors
Having A P Dimension Smaller Than 4.38 Inches ... 18-23
18.61 Dimensions for Lug Mounting for Shaded-Pole and Permanent-Split
Capacitor Motors ... 18-23
 Figure 18-8 Motors Having P Dimension Smaller Than 4.38 Inches 18-23
 Figure 18-9 Lug Mounting Dimensions ... 18-23

Application Data .. 18-23
18.62 Nameplate Current ... 18-23
18.63 Effect of Variation From Rated Voltage Upon Operating Speed 18-24
18.64 Insulation Testing .. 18-24
 18.64.1 Test Conditions ... 18-24
 18.64.2 Test Method ... 18-25
18.65 Service Conditions ... 18-25
 Figure 18-10 Typical Shaded-Pole Speed-Torque Curve
 Showing Expected Speed Variation Due to Manufacturing and
 Voltage Variations ... 18-26
 Figure 18-11 Typical Permanent-Split Capacitor Speed-Torque Curve Showing
 Expected Speed Variation Due to Manufacturing and Voltage
 Variations .. 18-27

Small Motors for Sump Pumps ... 18-28
18.66 Classification According To Electrical Type .. 18-28

Ratings .. 18-28
18.67 Voltage Ratings .. 18-28
18.68 Frequencies .. 18-28
18.69 Horsepower and Speed Ratings ... 18-28
 18.69.1 Horsepower Ratings ... 18-28
 18.69.2 Speed Ratings ... 18-28

Tests and Performance ... 18-28
18.70 Temperature Rise ... 18-29
18.71 Basis of Horsepower Ratings ... 18-29
18.72 Torque Characteristics .. 18-29
18.73 High-Potential Tests ... 18-29
18.74 Variations from Rated Voltage and Rated Frequency 18-29
18.75 Direction of Rotation .. 18-29

Manufacturing .. 18-30

18.76 General Mechanical Features ... 18-30

18.77 Dimensions for Sump Pump Motors, Type K 18-30

18.78 Frame Number and Frame Suffix Letter 18-30

Figure 18-12 Sump Pump Motor Dimensions 18-31

Small Motors for Gasoline Dispensing Pumps 18-32

18.79 Classification According To Electrical Type 18-32

Ratings ... 18-32

18.80 Voltage Ratings .. 18-32

18.80.1 Single-Phase Motors ... 18-32

18.80.2 Polyphase Induction Motors .. 18-32

18.81 Frequencies .. 18-32

18.82 Horsepower and Speed Ratings .. 18-32

18.82.1 Horsepower Ratings .. 18-32

18.82.2 Speed Ratings .. 18-32

Tests and Performance ... 18-33

18.83 Temperature Rise .. 18-33

18.84 Basis of Horsepower Ratings ... 18-33

18.85 Locked-Rotor Torque ... 18-33

18.86 Locked-Rotor Current ... 18-34

18.87 High-Potential Test ... 18-34

18.88 Variations From Rated Voltage and Rated Frequency 18-34

18.89 Direction of Rotation .. 18-34

Manufacturing .. 18-34

18.90 General Mechanical Features ... 18-34

18.91 Frame Number and Frame Suffix Letter 18-35

18.92 Dimensions for Gasoline Dispensing Pump Motors, Type G .. 18-35

Figure 18-13 Dimensions for Type G Gasoline Dispensing Pump Motors .. 18-35

Small Motors for Oil Burners ... 18-36

18.93 Classification According To Electrical Type 18-36

Ratings ... 18-36

© 2016 National Electrical Manufacturers Association
18.94 Voltage Ratings .. 18-36
18.95 Frequencies .. 18-36
18.96 Horsepower and Speed Ratings .. 18-36
 18.96.1 Horsepower Ratings .. 18-36
 18.96.2 Speed Ratings ... 18-36

Tests and Performance ... 18-37
 18.97 Temperature Rise .. 18-37
 18.98 Basis of Horsepower Rating .. 18-37
 18.99 Locked-Rotor Characteristics ... 18-37
 18.100 High-Potential Test .. 18-37
 18.101 Variations from Rated Voltage and Rated Frequency .. 18-38
 18.102 Direction of Rotation .. 18-38

Manufacturing .. 18-38
 18.103 General Mechanical Features .. 18-38
 Figure 18-14 Mechanical Features for Oil Burner Motor Construction 18-38
 18.104 Dimensions for Face-Mounting Motors for Oil Burners, Types M and N 18-39
 18.104.1 Dimensions .. 18-39
 18.105 Tolerances ... 18-39
 18.106 Frame Number and Frame Suffix Letter ... 18-39

Small Motors for Home Laundry Equipment .. 18-39
 18.107 Classification According To Electrical Type .. 18-39

Ratings .. 18-39
 18.108 Voltage Ratings .. 18-39
 18.109 Frequencies .. 18-40
 18.110 Horsepower and Speed Ratings .. 18-40
 18.110.1 Horsepower Ratings ... 18-40
 18.110.2 Speed Ratings .. 18-40
 18.111 Nameplate Marking .. 18-40

Tests and Performance ... 18-40
 18.112 Temperature Rise ... 18-40
 18.113 Basis of Horsepower Rating ... 18-41
 18.114 Maximum Locked-Rotor Current ... 18-41
 18.115 High-Potential Test .. 18-41
18.116 Variations From Rated Voltage and Rated Frequency .. 18-41

Manufacturing .. 18-41
18.117 General Mechanical Features ... 18-41
18.118 Dimensions for Motors for Home Laundry Equipment ... 18-41
 Figure 18-15 Motor Dimensions .. 18-42

Motors for Jet Pumps .. 18-42
18.119 Classification According To Electrical Type ... 18-42

Ratings .. 18-42
18.120 Voltage Ratings ... 18-42
 18.120.1 Single-Phase Motors .. 18-42
 18.120.2 Polyphase Induction Motors .. 18-43
18.121 Frequencies .. 18-43
18.122 Horsepower, Speed, and Service Factor Ratings ... 18-43

Test and Performance ... 18-43
18.123 Temperature Rise .. 18-43
18.124 Basis of Horsepower Rating .. 18-44
18.125 Torque Characteristics ... 18-44
18.126 Maximum Locked-Rotor Current .. 18-44
18.127 High-Potential Test ... 18-44
18.128 Variations from Rated Voltage and Rated Frequency .. 18-44
18.129 Direction of Rotation .. 18-44

Manufacturing .. 18-44
18.130 General Mechanical Features .. 18-44
18.131 Dimension for Face-Mounted Motors for Jet Pumps, ... 18-45
 Figure 18-16 Face-Mounted Jet Pump Motor Dimensions 18-45
 Figure 18-17 Face-Mounted Jet Pump Motor Dimensions 18-46
18.132 Frame Number and Frame Suffix Letter ... 18-46

Small Motors for Coolant Pumps ... 18-46
18.133 Classification According To Electrical Type .. 18-46

Ratings .. 18-47
18.134 Voltage Ratings ... 18-47
 18.134.1 Single-Phase Motors ... 18-47
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>18.134.2 Polyphase Induction Motors</td>
<td>18-47</td>
</tr>
<tr>
<td>18.134.3 Direct-current Motors</td>
<td>18-47</td>
</tr>
<tr>
<td>18.135 Frequencies</td>
<td>18-47</td>
</tr>
<tr>
<td>18.136 Horsepower and Speed Ratings</td>
<td>18-48</td>
</tr>
<tr>
<td>Tests and Performance</td>
<td>18-49</td>
</tr>
<tr>
<td>18.137 Temperature Rise</td>
<td>18-49</td>
</tr>
<tr>
<td>18.138 Basis of Horsepower Rating</td>
<td>18-49</td>
</tr>
<tr>
<td>18.139 Torque Characteristics</td>
<td>18-49</td>
</tr>
<tr>
<td>18.140 Maximum Locked-Rotor Current</td>
<td>18-49</td>
</tr>
<tr>
<td>18.141 High-Potential Test</td>
<td>18-49</td>
</tr>
<tr>
<td>18.142 Variations from Rated Voltage and Rated Frequency</td>
<td>18-49</td>
</tr>
<tr>
<td>18.143 Direction of Rotation</td>
<td>18-49</td>
</tr>
<tr>
<td>Manufacturing</td>
<td>18-50</td>
</tr>
<tr>
<td>18.144 General Mechanical Features</td>
<td>18-50</td>
</tr>
<tr>
<td>Submersible Motors for Deep Well Pumps—4-Inch</td>
<td>18-50</td>
</tr>
<tr>
<td>18.145 Classification According To Electrical Type</td>
<td>18-50</td>
</tr>
<tr>
<td>Ratings</td>
<td>18-50</td>
</tr>
<tr>
<td>18.146 Voltage Ratings</td>
<td>18-50</td>
</tr>
<tr>
<td>18.146.1 Single-Phase Motors</td>
<td>18-50</td>
</tr>
<tr>
<td>18.146.2 Polyphase Induction Motors</td>
<td>18-50</td>
</tr>
<tr>
<td>18.147 Frequencies</td>
<td>18-51</td>
</tr>
<tr>
<td>18.148 Horsepower and Speed Ratings</td>
<td>18-51</td>
</tr>
<tr>
<td>18.148.1 Horsepower Ratings</td>
<td>18-51</td>
</tr>
<tr>
<td>18.148.2 Speed Ratings</td>
<td>18-51</td>
</tr>
<tr>
<td>Tests and Performance</td>
<td>18-51</td>
</tr>
<tr>
<td>18.149 Basis of Horsepower Rating</td>
<td>18-51</td>
</tr>
<tr>
<td>18.150 Locked-Rotor Current</td>
<td>18-51</td>
</tr>
<tr>
<td>18.150.1 Single-Phase Small Motors</td>
<td>18-51</td>
</tr>
<tr>
<td>18.150.2 Single-Phase Medium Motors</td>
<td>18-51</td>
</tr>
<tr>
<td>18.150.3 Three-Phase Medium Motors</td>
<td>18-51</td>
</tr>
<tr>
<td>18.151 High-Potential Test</td>
<td>18-51</td>
</tr>
<tr>
<td>18.152 Variation from Rated Voltage at Control Box</td>
<td>18-51</td>
</tr>
<tr>
<td>18.153 Variation From Rated Frequency</td>
<td>18-52</td>
</tr>
</tbody>
</table>
18.154 Direction of Rotation ... 18-52
18.155 Thrust Capacity .. 18-52

Manufacturing .. 18-52
18.156 Terminal Lead Markings .. 18-52
18.157 General Mechanical Features .. 18-52
 Figure 18-18 General Mechanical Features 18-53

Submersible Motors for Deep Well Pumps—6-Inch 18-54
18.158 Classification According To Electrical Type 18-54

Ratings .. 18-54
18.159 Voltage Ratings ... 18-54
 18.159.1 Single-Phase Motors .. 18-54
 18.159.2 Polyphase Induction Motors 18-54
18.160 Frequencies .. 18-54
18.161 Horsepower and Speed Ratings ... 18-54
 18.161.1 Horsepower Ratings .. 18-54
 18.161.2 Speed Ratings .. 18-54

Tests and Performance ... 18-54
18.162 Basis for Horsepower Rating .. 18-54
18.163 Locked-Rotor Current .. 18-55
 18.163.1 For single-phase medium motors, see 12.34. 18-55
 18.163.2 For three-phase medium squirrel-cage induction motors, the locked-rotor
current, when measured with rated voltage and frequency impressed and
with rotor locked, shall not exceed the following: 18-55
18.164 High-Potential Test ... 18-55
18.165 Variation From Rated Voltage At Control Box 18-55
18.166 Variation From Rated Frequency ... 18-55
18.167 Direction of Rotation .. 18-55
18.168 Thrust Capacity .. 18-55

Manufacturing .. 18-56
18.169 Terminal Lead Markings .. 18-56
18.170 General Mechanical Features .. 18-56
 Figure 18-19 General Mechanical Features 18-56

Submersible Motors for Deep Well Pumps—8-Inch 18-57
18.171 Classification According To Electrical Type 18-57
Ratings .. 18-57
 18.172 Voltage Ratings .. 18-57
 18.173 Frequencies .. 18-57
 18.174 Horsepower and Speed Ratings ... 18-57
 18.174.1 Horsepower Ratings ... 18-57
 18.174.2 Speed Ratings ... 18-57
Tests and Performance .. 18-57
 18.175 Locked-Rotor Current ... 18-57
 18.176 High-Potential Test ... 18-58
 18.177 Variation From Rated Voltage At Control Box .. 18-58
 18.178 Variation From Rated Frequency .. 18-58
 18.179 Direction of Rotation ... 18-58
 18.180 Thrust Capacity .. 18-58
 18.181 General Mechanical Features .. 18-58
 Figure 18-20 General Mechanical Features .. 18-59
Medium DC Elevator Motors .. 18-59
 18.182 Classification According To Type .. 18-59
 18.182.1 Class DH .. 18-59
 18.182.2 Class DL ... 18-59
Ratings ... 18-59
 18.183 Voltage Ratings .. 18-59
 18.184 Horsepower and Speed Ratings .. 18-60
 18.184.1 Class DH .. 18-60
 18.184.2 Class DL ... 18-60
 18.185 Basis of Rating .. 18-60
 18.185.1 Class DH .. 18-60
 18.185.2 Class DL ... 18-60
 18.186 Nameplate Markings ... 18-60
Tests and Performance .. 18-61
 18.187 Acceleration and Deceleration Capacity .. 18-61
 18.188 Variation in Speed Due to Load .. 18-61
 18.188.1 Class DH .. 18-61
 18.188.2 Class DL ... 18-61
 18.189 Variation From Rated Speed .. 18-61
18.190 Variation In Speed Due To Heating ... 18-61
 18.190.1 Open-Loop Control System ... 18-61
 18.190.2 Closed-Loop Control System .. 18-61
18.191 High-Potential Test .. 18-61
18.192 Temperature Rise .. 18-61

Motor-Generator Sets for DC Elevator Motors .. 18-62

Ratings ... 18-62
 18.193 Basis of Rating ... 18-62
 18.193.1 Time Rating ... 18-62
 18.193.2 Relation to Elevator Motor .. 18-62
 18.194 Generator Voltage Ratings .. 18-62
 18.194.1 Value .. 18-62
 18.194.2 Maximum Value .. 18-62

Tests and Performance .. 18-63
 18.195 Variation In Voltage Due To Heating ... 18-63
 18.195.1 Open-Loop Control System .. 18-63
 18.195.2 Closed-Loop Control System ... 18-63
 18.196 Overload .. 18-63
 18.197 High-Potential Test ... 18-63
 18.198 Variation from Rated Voltage .. 18-63
 18.199 Variation from Rated Frequency ... 18-63
 18.200 Combined Variation of Voltage and Frequency .. 18-63
 18.201 Temperature Rise ... 18-63
 18.201.1 Induction Motors ... 18-63
 18.201.2 Direct-Current Adjustable-Voltage Generators 18-63

Medium AC Polyphase Elevator Motors ... 18-64
 18.202 Classification According To Electrical Type .. 18-64
 18.202.1 AH1 .. 18-64
 18.202.2 AH2 .. 18-64
 18.202.3 AH3 .. 18-64

Ratings ... 18-64
 18.203 Basis of Rating—Elevator Motors .. 18-64
 18.204 Voltage Ratings ... 18-65
 18.205 Frequency ... 18-65
18.206 Horsepower and Speed Ratings ... 18-65

Tests and Performance .. 18-65
18.207 Locked-Rotor Torque for Single-Speed Squirrel-Cage Elevator Motors 18-65
18.208 Time-Temperature Rating .. 18-65
18.209 High-Potential Test .. 18-65
18.210 Variations From Rated Voltage and Rated Frequency 18-66

Manufacturing ... 18-66
18.211 Nameplate Marking .. 18-66

Medium AC Crane Motors ... 18-66
Ratings .. 18-66
18.212 Voltage Ratings ... 18-66
18.213 Frequencies ... 18-66
18.214 Horsepower and Speed Ratings ... 18-67
18.215 Secondary Data for Wound-Rotor Crane Motors ... 18-68
18.216 Nameplate Marking .. 18-68
18.217 Frame Sizes for Two- and Three-Phase 60-Hertz Open and Totally Enclosed
 Wound-Rotor Crane Motors Having Class B Insulation Systems 18-69

Tests and Performance .. 18-69
18.218 Time Ratings .. 18-69
18.219 Temperature Rise ... 18-69
18.220 Breakdown Torque .. 18-69
 18.220.1 Minimum Value .. 18-69
 18.220.2 Maximum Value .. 18-69
18.222 High-Potential Test ... 18-70
18.223 Overspeeds ... 18-70
18.224 Plugging .. 18-70
18.225 Variations from Rated Voltage and Rated Frequency 18-70
18.226 Routine Tests .. 18-70
18.227 Balance of Motors .. 18-70
18.228 bearings ... 18-70
18.229 Dimensions for Alternating-Current Wound-Rotor Open and Totally Enclosed
 Crane Motors .. 18-70
 Figure 18-21 Dimensions for Open and Totally Enclosed Crane Motors 18-71
18.230 Dimensions and Tolerances for Alternating-Current Open and Totally
Enclosed Wound-Rotor Crane Motors Having Antifriction Bearings 18-71

Medium Shell-Type Motors for Woodworking and Machine-Tool Applications 18-73
18.231 Definition of Shell-Type Motor .. 18-73
18.232 Temperature Rise—Shell-Type Motor ... 18-73
18.233 Temperature Rise for 60-Hertz Shell-Type Motors Operated on 50-Hertz 18-73
18.234 Operation at Other Frequencies—Shell-Type Motors 18-73
18.235 Ratings and Dimensions for Shell-Type Motors ... 18-73
 18.235.1 Rotor Bore and Keyway Dimensions, Three-Phase 60-Hertz 40°C Open
 Motors, 208, 220, 440, and 550 Volts ... 18-73
 18.235.1.1 Straight Rotor Bore Motors ... 18-74
 18.235.1.2 Tapered Rotor Bores* ... 18-74
 18.235.2 BH and BJ Dimensions in Inches, Open Type Three-Phase 60-Hertz 40°C
 Continuous, 208, 220, 440, and 550 Volts ... 18-75
18.236 Lettering for dimension sheets for shell-type motors 18-75
 Figure 18-22 Dimension Sheet Lettering ... 18-76

Medium AC Squirrel-Cage Induction Motors for Vertical
Turbine Pump Applications ... 18-77
18.237 Dimension for Type Vp Vertical Solid-Shaft, Single-Phase and Polyphase, Direct
 Connected Squirrel-Cage Induction Motors for Vertical Turbine Pump Applications.... 18-77
 Figure 18-23
 Dimensions for Motors for Vertical Turbine Pump Applications 18-78
18.238 Dimensions for Type P and Ph Alternating-Current Squirrel-Cage
 Vertical Hollow-Shaft Motors for Vertical Turbine Pump Applications 18-78
 18.238.1 Base Dimensions .. 18-79
 18.238.2 Coupling Dimensions ... 18-80

Medium AC Squirrel-Cage Induction Motors for Close-Coupled Pumps 18-81
Ratings ... 18-81
18.239 Voltage Ratings .. 18-81
18.240 Frequencies .. 18-81
18.241 Nameplate Markings ... 18-81
18.242 Nameplate Time Ratings ... 18-81

Tests and Performance ... 18-81
18.243 Temperature Rise .. 18-81
18.244 Torques .. 18-81
18.245 Locked-Rotor Currents .. 18-81
18.246 High-Potential Test
- Page 18-81

18.247 Variations from Rated Voltage and Rated Frequency
- Page 18-81

18.248 Balance of Motors
- Page 18-81

Manufacturing
- Page 18-82

18.249 Frame Assignments
- Page 18-82

18.250 Dimensions for Types JM and JP Alternating-Current Face-Mounting Close-Coupled Pump Motors Having Antifriction Bearings
- Page 18-82
 (This standard was developed jointly with the Hydraulic Institute.)
 - Figure 18-24 Dimensions for Pump Motors Having Antifriction Bearings
 - Table 1 of 18.250
 - Table 2 of 18.250

18.251 Dimensions for Type LP and LPH Vertical Solid-Shaft Single-Phase and Polyphase Direct-Connected Squirrel-Cage Induction Motors (Having The Thrust Bearing in the Motor) for Chemical Process In-Line Pump Applications
- Page 18-82
 - Figure 18-25 Dimensions of Induction Motors for Chemical Process In-Line Pump Applications

18.252 Dimensions for Type Hp and Hph Vertical Solid-Shaft Single-Phase and Polyphase Direct-Connected Squirrel-Cage Induction Motors for Process and In-Line Pump Applications
- Page 18-82
 (This standard was developed jointly with the Hydraulic Institute.)
 - Figure 18-26 Dimensions of Induction Motors for Process and In-Line Pump Applications

DC Permanent-Magnet Tachometer Generators for Control Systems
- Page 18-92

18.253 Classification According to Electrical Type
- Page 18-92

18.254 Classification According To Output Voltage Rating
- Page 18-92

Ratings
- Page 18-92

18.255 Output Voltage Ratings
- Page 18-92

18.256 Current Rating
- Page 18-92

18.257 Speed Ratings
- Page 18-92

Tests and Performance
- Page 18-92

18.258 Test Methods
- Page 18-92

18.259 Temperature Rise
- Page 18-92

18.260 Variation from Rated Output Voltage
- Page 18-93
 - 18.260.1 High-Voltage Type
 - 18.260.2 Low-Voltage Type

18.261 High-Potential Tests
- Page 18-93
 - 18.261.1 Test
18.261.2 Application .. 18-93
18.262 Overspeed .. 18-93
18.263 Performance Characteristics ... 18-93
 18.263.1 High-Voltage Type .. 18-93
 18.263.2 Low-Voltage Type .. 18-94

Manufacturing .. 18-94
18.264 Nameplate Marking .. 18-94
 18.264.1 High-Voltage Type .. 18-94
 18.264.2 Low-Voltage Type .. 18-94
18.265 Direction of Rotation ... 18-95
18.266 General Mechanical Features .. 18-95
 18.266.1 High-Voltage Type .. 18-95
 18.266.2 Low-Voltage Type .. 18-95
18.267 Terminal Markings ... 18-95

Torque Motors .. 18-95
18.268 Definition ... 18-95
18.269 Nameplate Markings .. 18-95
 18.269.1 AC Torque Motors .. 18-95
 18.269.2 DC Torque Motors .. 18-96

Small Motors for Carbonator Pumps ... 18-96
18.270 Classification According To Electrical Type ... 18-96

Ratings .. 18-96
18.271 Voltage Ratings ... 18-96
18.272 Frequencies ... 18-96
18.273 Horsepower and Speed Ratings .. 18-96
 18.273.1 Horsepower Ratings ... 18-96
 18.273.2 Speed Ratings .. 18-96

Tests and Performance .. 18-97
18.274 Temperature Rise .. 18-97
18.275 Basis of Horsepower Rating ... 18-97
18.276 High-Potential Test .. 18-97
18.277 Maximum Locked-Rotor Current—Single Phase ... 18-97
18.278 Variations from Rated Voltage and Rated Frequency .. 18-97
18.279 Direction of Rotation ... 18-97
Manufacturing .. 18-97
18.280 General Mechanical Feature ... 18-97
18.281 Dimensions for Carbonator Pump Motors .. 18-97
 Figure 18-27 Carbonator Pump Motor Dimensions .. 18-98

Section III Large Machines

Part 20 Large Machines—Induction Machines .. 20-1
 20.1 Scope ... 20-1
 20.2 Basis of Rating ... 20-1
 20.3 Machine Power and Speed Ratings ... 20-1
 20.4 Power Ratings of Multispeed Machines .. 20-2
 20.4.1 Constant Power ... 20-2
 20.4.2 Constant Torque .. 20-2
 20.4.3 Variable Torque .. 20-2
 20.4.3.2 Variable Torque Square ... 20-3
 20.5 Voltage Ratings ... 20-3
 20.5.1 Voltage Ratings .. 20-3
 20.5.2 Preferred Machine Power and Voltage Rating .. 20-3
 20.6 Frequencies ... 20-4
 20.7 Service Factor .. 20-4
 20.7.1 Service Factor of 1.0 .. 20-4
 20.7.2 Service Factor of 1.15 ... 20-4
 20.7.3 Application of Motors with a Service Factor of 1.15 ... 20-4

Tests and Performance .. 20-4
 20.8 Temperature Rise ... 20-4
 20.8.1 Machines with a 1.0 Service Factor at Rated Load .. 20-5
 20.8.2 Machines with a 1.15 Service Factor at Service Factor Load 20-5
 20.8.3 Temperature Rise for Ambients Higher than 40°C .. 20-6
 20.8.4 Temperature Rise for Air-Cooled Machines for Ambients Lower than 40°C, but Not Below 0°C* ... 20-6
 20.9 Code Letters (for Locked-Rotor kVA) ... 20-7
 20.10 Torque ... 20-8
 20.10.1 Standard Torque ... 20-8
 20.10.2 High Torque .. 20-8
 20.10.3 Motor Torques When Customer Specifies A Custom Load Curve 20-9
 20.10.4 Motor With 4.5 pu and Lower Locked-Rotor Current .. 20-9
 20.11 Load Wk² for Polyphase Squirrel-Cage Induction Motors ... 20-9
20.12 Number of Starts ... 20-9
 20.12.1 Starting Capability ... 20-9
 20.12.2 Additional Starts ... 20-10
 20.12.3 Information Plate ... 20-10
20.13 Overspeeds ... 20-10
 Table 20-1 Load Wk² for Polyphase Squirrel-Cage Induction Motors* ... 20-11
20.14 Variations From Rated Voltage and Rated Frequency .. 20-13
 20.14.1 Running .. 20-13
 20.14.2 Starting .. 20-13
20.15 Operation of Induction Machines from Variable-Frequency or Variable-Voltage Power Supplies, or Both .. 20-13
20.16 Tests .. 20-14
 20.16.1 Test Methods .. 20-14
 20.16.2 Routine Tests on Machines Completely Assembled in Factory .. 20-14
 20.16.3 Routine Tests on Machines Not Completely Assembled in Factory 20-14
20.17 High-Potential Tests .. 20-14
 20.17.1 Safety Precautions and Test Procedure ... 20-14
 20.17.2 Test Voltage—Primary Windings .. 20-14
20.18 Machine With Sealed Windings—Conformance Tests .. 20-15
 20.18.1 Test for Stator Which Can Be Submerged ... 20-15
 20.18.2 Test for Stator Which Cannot Be Submerged ... 20-15
20.19 Machine Sound .. 20-15
20.20 Report of Test Form for Induction Machines .. 20-16
20.21 Efficiency ... 20-16
 20.21.1 Determination of Motor Efficiency and Losses ... 20-16
 20.21.A Efficiency of Polyphase Squirrel-Cage Large Motors with Continuous Ratings 20-17
 20.21.B Efficiency Levels of 60Hz Energy Efficient Polyphase Squirrel-Cage Random Wound Large Induction Motors .. 20-17
 Table 20-A Full-Load Efficiencies of 60 Hz Energy Efficient Motors Rated 600 Volts or Less (Random Wound) ... 20-18
 20.21.C Efficiency Level of Premium Efficiency Large Electric Motors ... 20-18
 Table 20-B Full-Load Efficiencies for 60 Hz Premium Efficiency Electric Motors Rated 600 Volts or Less (Random Wound) ... 20-19
 Table 20-C Full-Load Efficiencies for 60 Hz Premium Efficiency Electric Motors Rated 5000 Volts or Less (Form Wound) ... 20-20
 Table 20-D Full-Load Efficiencies for 50 Hz Premium Efficiency Electric Motors Open and Enclosed Rated 600 Volts or Less (Random Wound) 20-21
 Table 20-E KW Equivalent Full-Load Efficiencies of 60 Hz Energy Efficient Motors Rated 600 Volts or Less (Random Wound) ... 20-21
Table 20-F KW Equivalent Full-Load Efficiencies for 60Hz Premium Efficiency
Rated 600 Volts or Less (Random Wound) .. 20-22
Table 20-G KW Equivalent Full-Load Efficiencies for 60 Hz Premium Efficiency
Electric Motors Rated 5000 Volts or Less (Form Wound) 20-23

20.22 Mechanical Vibration .. 20-24
20.23 Reed Frequency of Vertical Machines ... 20-25
20.24 Effects of Unbalanced Voltages on the Performance of Polyphase
squirrel-cage induction motors ... 20-25
Figure 20-2 Polyphase Squirrel-Cage Induction Motors Derating Factor Due
to Unbalanced Voltage ... 20-26
20.24.1 Effect on Performance—General .. 20-26
20.24.2 Voltage Unbalance Defined .. 20-26
20.24.3 Torques .. 20-26
20.24.4 Full-Load Speed .. 20-26
20.24.5 Currents ... 20-26

Manufacturing .. 20-27

20.25 Nameplate Marking ... 20-27
20.25.1 Alternating-Current Polyphase Squirrel-Cage Motors 20-27
20.25.2 Polyphase Wound-Rotor Motors .. 20-27
20.25.3 Polyphase Squirrel-Cage Generators .. 20-28
20.25.4 Polyphase Wound-Rotor Generators .. 20-28

20.26 Motor terminal housings and boxes ... 20-28
20.26.1 Box Dimensions .. 20-28
20.26.2 Accessory Lead Terminations ... 20-28
20.26.3 Lead Terminations of Accessories Operating at 50 Volts or Less 20-28
Table 20-3 Type I Terminal Housing: Unsupported and Insulated Terminations 20-29

20.27 Embedded Temperature Detectors .. 20-29
Figure 20-3 Type II Machine Terminal Housing Standoff—Insulator-Supported
Insulated or Uninsulated Terminations .. 20-31

Application Data .. 20-31

20.28 Service Conditions ... 20-31
20.28.1 General .. 20-31
20.28.2 Usual Service conditions ... 20-32
20.28.3 Unusual Service Conditions ... 20-32

20.29 End Play and Rotor Float for Coupled Sleeve Bearing Horizontal
induction machines .. 20-33
20.29.1 General .. 20-33
20.29.2 Limits ... 20-33
20.29.3 Marking Requirements ... 20-33
Section III Large Machines

Part 21 Large Machines—Synchronous Motors

Ratings

21.1 Scope.. 21-1
21.2 Basis of Rating.. 21-1
21.3 Horsepower and Speed Ratings... 21-2
21.4 Power Factor.. 21-2
21.5 Voltage Ratings.. 21-2
 21.5.1 Voltage Ratings .. 21-2
 21.5.2 Preferred Motor Output/Voltage Rating.. 21-3
21.6 Frequencies.. 21-3
21.7 Excitation Voltage .. 21-3
21.8 Service Factor.. 21-3
21.8.1 Service Factor of 1.0
21.8.2 Service Factor of 1.15
21.8.3 Application of Motor with 1.15 Service Factor

21.9 Typical kW Ratings of Exciters for 60-Hertz Synchronous Motors

21.10 Temperature Rise—Synchronous Motors

21.11 Torques

21.12 Normal Wk^2 of Load

21.13 Number of Starts

21.14 Efficiency

21.15 Overspeed

21.16 Operation At Other Than Rated Power Factors

21.17 Variations From Rated Voltage and Rated Frequency

21.18 Operation of Synchronous Motors from Variable-Frequency Power Supplies

21.19 Specification Form for Slip-Ring Synchronous Motors

21.20 Specification Form for Brushless Synchronous Motors

21.21 Routine Tests

Table 21-1 1.0 Power Factor, 60-Hertz, Synchronous Motors, 1800-514 Rpm
Table 21-2 0.8 Power Factor, 60-Hertz, Synchronous Motors, 1800-514 Rpm
Table 21-3 1.0 Power Factor, 60-Hertz, Synchronous Motors, 450-150 Rpm
Table 21-4 0.8 Power Factor, 60-Hertz, Synchronous Motors, 450-150 Rpm

Tests and Performance

Table 21-5 Torque Values
21.21.1 Motors Not Completely Assembled in the Factory ... 21-23
21.21.2 Motors Completely Assembled in the Factory ... 21-23

21.22 High-Potential Tests ... 21-23
21.22.1 Safety Precautions and Test Procedure ... 21-23
21.22.2 Test Voltage—Armature Windings ... 21-23
21.22.3 Test Voltage—Field Windings, Motors with Slip Rings 21-23
21.22.4 Test Voltage—Assembled Brushless Motor Field Winding and Exciter Armature Winding ... 21-23
21.22.5 Test Voltage—Brushless Exciter Field Winding 21-24

21.23 Machine Sound ... 21-24

21.24 Mechanical Vibration .. 21-24

Manufacturing... 21-24

21.25 Nameplate Marketing .. 21-24

21.26 Motor Terminal Housings and Boxes ... 21-25
21.26.1 Box Dimensions ... 21-25
21.26.2 Accessory Lead Terminations ... 21-25
21.26.3 Lead Terminations of Accessories Operating at 50 Volts of Less 25
Table 21-7 Type I Terminal Housing Unsupported and Insulated Terminations 21-26
Figure 21-1 Type II Motor Terminal Housing Standoff-Insulator-Supported Insulated or Uninsulated Terminations .. 21-27

21.27 Embedded Detectors ... 21-27

Application Data ... 21-27

21.28 Service Conditions ... 21-27
21.28.1 General .. 21-27
21.28.2 Usual Service Conditions ... 21-28
21.28.3 Unusual Service Conditions ... 21-28

21.29 Effects of Unbalanced Voltages on the Performance of Polyphase Synchronous Motors .. 21-29
Figure 21-2 Polyphase Synchronous Motor Derating Factor Due to Unbalanced Voltage .. 21-29
21.29.1 Effect on Performance .. 21-30
21.29.2 Voltage Unbalance Defined .. 21-30

21.30 Coupling End Play and Rotor Float for Horizontal Motors 21-30

21.31 Belt, Chain, and Gear Drive .. 21-30

21.32 Pulsating Armature Current .. 21-30

21.33 Torque Pulsations During Starting of Synchronous Motors 21-31

21.34 Bus Transfer or Reclosing .. 21-31
21.35.1 Slow Transfer or Reclosing ... 21-31
21.34.2 Fast Transfer or Reclosing

21.34.3 Bus Transfer Procedure

21.35 Calculation of Natural Frequency of Synchronous Machines Direct-Connected to Reciprocating Machinery

21.35.1 Undamped Natural Frequency

21.35.2 Synchronizing Torque Coefficient, P_r

21.35.3 Factors Influencing P_r

21.36 Typical Torque Requirements

Table 21-8 Typical Torque Requirements for Synchronous Motor Applications

21.37 Compressor Factors

21.38 Surge Capabilities of AC Windings with Form-Wound Coils

21.39 Machines Operating on an Ungrounded System

21.40 Occasional Excess Current

Table 21-9 Compressor Factors

Section III Large Machines

Part 23 Large Machines—DC Motors Larger Than 1.25 Horsepower Per Rpm, Open Type... 23-1

Classification

23.1 Scope

23.2 General industrial motors

23.3 Metal Rolling Mill Motors

23.3.1 Class N Metal Rolling Mill Motors

23.3.2 Class S Metal Rolling Mill Motors

23.4 Reversing Hot Mill Motors

Ratings

23.5 Basis of Rating

23.6 Horsepower, Speed, and Voltage Ratings

23.6.1 General Industrial Motors and Metal Rolling Mill Motors, Classes N and S

Table 23-1

23.6.2 Reversing Hot Mill Motors

Table 23-2

23.7 Speed Ratings by Field Control for 250-Volt Direct-Current Motors

Table 23-3 General Industrial Motors (See 23.2) and Metal Rolling Mill Motors, Class N (See 23.3)

Table 23-4 Metal Rolling Mill Motors, Class S (See 23.3)

23.8 Speed Ratings by Field Control for 500- or 700-Volt Direct-Current Motors

Table 23-5 General Industrial Motors (See Mg 23.2) and Metal Rolling Mill Motors
Class N (See 23.3) ... 23-6
Table 23-6 Metal Rolling Mill Motors, Class S (See 23.3) ... 23-7
Table 23-7 Reversing Hot Mill Motors (See 23.4) ... 23-8

Tests and Performance ... 23-9

23.9 Temperature Rise ... 23-9
Observable Temperature Rises, Degrees C ... 23-10
Observable Temperature Rises, Degrees Continued .. 23-11
23.9.1 Temperature Rise for Ambients Higher than 40° C ... 23-12
23.9.2 Temperature Rise for Altitudes Greater than 3300 Feet (1000 Meters) 23-12
23.9.3 Temperature Rise for Air-Cooled Machines for Ambients Lower than 40° C, but Not Below 0° C* ... 23-12
23.10 Overload Capability ... 23-13
23.10.1 General Industrial Motors ... 23-13
23.10.2 Metal Rolling Mill Motors (Excluding Reversing Hot Mill Motors)—Open, Forced-Ventilated, and Totally Enclosed Water-Air-Cooled ... 23-13
23.10.3 Reversing Hot Mill Motors—Forced-Ventilated and Totally Enclosed Water-Air-Cooled ... 23-14
23.11 Momentary Load Capacity ... 23-14
23.12 Successful Commutation .. 23-15
23.13 Efficiency .. 23-15
23.14 Typical Reversal Time of Reversing Hot Mill Motors .. 23-16
23.15 Impact Speed Drop of A Direct-Current Motor ... 23-16
23.16 Overspeed .. 23-16
23.17 Variation from Rated Voltage .. 23-16
23.17.1 Steady State ... 23-16
23.17.2 Transient Voltages of Microsecond Duration .. 23-16
23.18 Field Data for Direct-Current Motors .. 23-17
23.19 Routine Tests .. 23-17
23.20 High-Potential Test ... 23-17
23.20.1 Safety Precautions and Test Procedure ... 23-17
23.20.2 Test Voltage .. 23-18
23.21 Mechanical Vibration .. 23-18
23.22 Method of Measuring the Motor Vibration .. 23-18
23.23 Conditions of Test for Speed Regulation ... 23-18

Manufacturing .. 23-18

23.24 Nameplate Marking ... 23-18
Application Data .. 23-18
 23.25 Service Conditions ... 23-18
 23.25.1 General ... 23-18
 23.25.2 Usual Service Conditions ... 23-19
 23.25.3 Unusual Service Conditions ... 23-19
 23.26 Operation of Direct-Current Motors On Rectified Alternating Current ... 23-20
 23.26.1 General ... 23-20
 23.26.2 Operation on Power Supply with Ripple .. 23-20
 23.26.3 Bearing Currents ... 23-21
 23.27 Operation of Direct-Current Motors Below Base Speed by Reduced
 Armature Voltage ... 23-21
 23.28 Rate of Change of Load Current ... 23-21

Section III Large Machines

Part 24 Large Machines—DC Generators Larger Than 1.0 Kilowatt .. 24-1

Per Rpm, Open Type Classification ... 24-1
 24.0 Scope .. 24-1
 24.1 General Industrial Generators .. 24-1
 24.2 Metal Rolling Mill Generators .. 24-1
 24.3 Reversing Hot Mill Generators ... 24-1

Ratings .. 24-1
 24.9 Basis of Rating ... 24-1
 24.10 Kilowatt, Speed, and Voltage Ratings .. 24-1
 Table 24-1 Kilowatt, Speed, and Voltage Ratings for DD Generators Larger
 Than 1.0 Kilowatt Per Rpm, Open Type ... 24-2

Tests and Performance .. 24-2
 24.40 Temperature Rise ... 24-2
 Observable Temperature Rises, Degrees C ... 24-3
 Observable Temperature Rises, Degrees C ... 24-4
 24.40.1 Temperature Rise for Ambients Higher than 40°C ... 24-5
 24.40.3 Temperature Rise for Altitudes Greater than 3300 Feet (1000 Meters) 24-5
 24.40.3 Temperature Rise for Air-Cooled Machines for Ambients Lower than 40°C, but
 Not Below 0°C* ... 24-5
 24.41 Overload Capability ... 24-6
 24.41.1 General Industrial Generators ... 24-6
 24.41.2 Metal Rolling Mill Generators (Excluding Reversing Hot Mill Generators)—
 Open, Forced-Ventilated, and Totally Enclosed Water-Air-Cooled ... 24-6

© 2016 National Electrical Manufacturers Association
24.41.3 Reversing Hot Mill Generators—Forced-Ventilated and Totally Enclosed Water-Air-Cooled ... 24-6
24.42 Momentary Load Capacity ... 24-7
24.43 Successful Commutation ... 24-7
24.44 Output at Reduced Voltage ... 24-7
24.45 Efficiency .. 24-7
24.46 Overspeed ... 24-8
24.47 Field Data for Direct-Current Generators 24-8
24.48 Routine Tests .. 24-9
24.49 High Potential Tests .. 24-9
 24.49.1 Safety Precautions and Test Procedure 24-9
 24.49.2 Test Voltage ... 24-9
24.50 Conditions of Tests for Voltage Regulation 24-9
24.51 Mechanical Vibration ... 24-9

Manufacturing ... 24-9
 24.61 Nameplate Marking .. 24-9

Application Data .. 24-10
 24.80 Service Conditions ... 24-10
 24.80.1 General ... 24-10
 24.80.2 Usual Service Conditions ... 24-10
 24.80.3 Unusual Service Conditions .. 24-10
 24.81 Rate of Change of Load Current .. 24-11
 24.82 Successful Parallel Operation of Generators 24-11
 24.83 Operation of Direct-Current Generators In Parallel With Rectified Alternating-Voltage Power Supply 24-11
 24.83.1 General ... 24-12
 24.83.2 Operation in Parallel with Power Supply with Ripple 24-12
 24.83.3 Bearing Currents ... 24-12
 24.84 Compounding ... 24-12
 24.84.1 Flat Compounding ... 24-12
 24.84.2 Other .. 24-12

Section IV Performance Standards Applying To All Machines

Part 30 Application Considerations for Constant Speed Motors Used on a Sinusoidal Bus with Harmonic Content and General Purpose Motors Used With Adjustable-Voltage or Adjustable-Frequency Controlsor Both ... 30-1

 30.0 Scope ... 30-1
30.1 Application Considerations for Constant Speed Motors Used on a Sinusoidal Bus With Harmonic Content

30.1.1 Efficiency ... 30-1
30.1.2 Derating for Harmonic Content 30-1
Figure 30-1 Derating Curve for Harmonic Voltages 30-2
30.1.3 Power Factor Correction ... 30-2

30.2 General Purpose Motors Used with Adjustable-Voltage or Adjustable-Frequency Controls or Both .. 30-2
30.2.1 Definitions .. 30-3
30.2.1.16 Rated Temperature .. 30-4
30.2.2 Application Considerations ... 30-5
Figure 30-2 The Effect of Reduced Cooling on the Torque Capability at Reduced Speeds of 60 Hz Nema Design A and B Motors .. 30-7
Figure 30-3 Examples of Torque Derating of Nema Motors When Used with Adjustable Frequency Controls .. 30-8
Figure 30-4 Torque Capability Above Base Speed 30-9
Table 30-1 Maximum Safe Operating Speeds for Direct-Coupled Motors Used On .. 30-10
Figure 30-5 Typical Voltage Response At Motor Termi 30-14

Section IV Performance Standards Applying to all Machines

Part 31 Definite Purpose Inverter-fed Polyphase Motors ... 31-1

31.0 Scope .. 31-1
31.1 Service Conditions .. 31-1
31.1.1 General .. 31-1
31.1.2 Usual Service Conditions ... 31-1
31.1.3 Unusual Service Conditions ... 31-1
31.1.4 Operation in Hazardous (Classified) Locations 31-2
31.2 Dimensions, Tolerances, and Mounting for Frame Designations 31-3
31.3 Rating ... 31-3
31.3.1 Basis of Rating ... 31-3
Figure 31-1 Basis of Rating .. 31-3
31.3.2 Base Horsepower and Speed Ratings 31-3
Table 31-1’Preferred Horsepower and Speed Ratings 31-4
31.3.3 Speed Range .. 31-4
31.3.4 Voltage .. 31-4
31.3.5 Number of Phases .. 31-5
31.3.6 Direction of Rotation .. 31-5
31.3.7 Service Factor .. 31-5
31.3.8 Duty ... 31-5
31.4 Performance ... 31-5
31.4.1 Temperature Rise .. 31-5
Table 31-2 Temperature Rise .. 31-6
Figure 31-2 Load Cycle Based On Temperature and Time of Operation 31-8
31.4.2 Torque ... 31-9
31.4.3 Operating Limitations .. 31-9
31.4.4 Insulation Considerations .. 31-11
Table 31-3 .. 31-11
Table 31-4 .. 31-12
Table 31-5 .. 31-13
31.4.5 Resonances, Sound, Vibration .. 31-14
31.4.5.3 Torsional Considerations ... 31-14
31.4.6 Bearing Lubrication at Low and High Speeds ... 31-15
31.5 Nameplate Marking .. 31-15
31.5.1 Variable Torque Applications ... 31-15
31.5.2 Other Applications ... 31-15
31.6 Tests .. 31-16
31.6.1 Test Method .. 31-16
31.6.2 Routine Tests ... 31-16
31.6.3 Performance Tests ... 31-16
31.7 Accessory Mounting ... 31-16

Section IV Performance Standards Applying to All Machines

Part 32 Synchronous Generators (Exclusive of Generators Covered by ANSI Standards
C50.12, C50.13, C50.14, and C50.15 Above 5000 kVA) ... 32-1

Ratings .. 32-1

32.0 Scope .. 32-1
32.1 Basis of Rating .. 32-1
32.2 Kilovolt-Ampere (kVA) and (Kw) Ratings ... 32-1
Table 32-1 Kilovolt-Ampere and Kilowatt Ratings .. 32-1
32.3 Speed Ratings .. 32-2
Table 32-2 Speed Ratings ... 32-2
32.4 Voltage Ratings ... 32-3
32.4.1 Voltage Ratings for 60 Hz Circuits, Volts .. 32-3
32.4.2 Voltage Ratings for 50 Hz Circuits, Volts .. 32-3
32.4.3 Excitation Voltages ... 32-3
32.5 Frequencies ... 32-3
32.6 Temperature Rise ... 32-3
Table 32-3 Temperature Rise .. 32-4
32.6.1 For machines which operate under prevailing barometric pressure and which are designed not to exceed the specified temperature rise at altitudes from 3300 feet (1000 meters) to 13000 feet (4000 meters), the temperature rises, as checked by tests at low altitudes, shall be less than those listed in the foregoing table by 1 percent of the specified temperature rise for each 330 feet (100 meters) of altitude in excess of 3300 feet (1000 meters).

32.6.2 Temperature Rise for Air-Cooled Machines for Ambients Lower Than 40º C, But Not Below 0º C*

32.7 Maximum Momentary Overloads..32-6
32.8 Overload Capability...32-6
32.9 Occasional Excess Current...32-6
32.10 Maximum Deviation Factor...32-6
32.11 Telephone Influence Factor (TIFf)..32-6
32.11.1 The balanced telephone influence factor (TIF) based on the weighting factors given in 32.11.3 shall not exceed the following values:.................................32-6
32.11.2 The residual component telephone influence factor based on the weighting factors given in 32.11.3 shall not exceed the following values. The residual component applies only to those generators having voltage ratings of 2000 volts and higher...32-7
32.11.3 The single-frequency telephone influence weighting factors (TIFf), according to the 1960 single frequency weighting are as listed in Table 32-4.................32-7

Table 32-4 Tif, — According to the 1960 Single Frequency Weighting.................32-7
32.11.4 The telephone influence factor shall be measured in accordance with IEEE Std 115..32-8
32.12 Efficiency..32-8
32.13 Short-Circuit Requirements..32-8
32.13.1 With the voltage regulator in service, the allowable duration, t, of the short circuit shall be determined from the following equation in situations where the regulator is designed to provide ceiling voltage continuously during a short circuit:...32-9
32.14 Continuous Current Unbalance...32-9
32.15 Operation with Non-Linear or Asymmetric Loads ..32-9
32.16 Overspeeds..32-10
32.17 Variation from Rated Voltage...32-10
32.17.1 Broad Voltage Range...32-10
32.17.2 Discrete Voltage ...32-10
32.18 Synchronous Generator Voltage Regulation (Voltage Dip)............................32-10
32.18.1 General ...32-10
32.18.2 Definitions ..32-11
Figure 32-1 Generator Transient Voltage Versus Time for Sudden Load Change32-11
32.18.3 Voltage Recorder Performance...32-12
32.18.4 Examples ..32-12
Figure 32-2 Generator Transient Voltage Versus Time for Sudden Load Change32-13
32.18.5 Motor Starting Loads ...32-13
Figure 32-3 Performance Curves (Pf < 0.3) (Step Loading) ..32-14
32.19 Performance Specification Forms ..32-15
32.19.1 Slip-ring Synchronous Generators ...32-15
32.19.2 Brushless Synchronous Generators ...32-16
Brushless Synchronous Generator Rating ...32-16
32.20 Routine Factory Tests ..32-17
32.20.1 Generators Not Completely Assembled in the Factory32-17
32.20.2 Generators Completely Assembled in the Factory ..32-17
32.21 High-Potential Tests ..32-17
32.21.1 Safety Precautions and Test Procedures ..32-17
32.21.2 Test Voltage—Armature Windings ...32-17
32.21.3 Test Voltage—Field Windings, Generators with Slip Rings32-18
32.21.4 Test Voltage—Assembled Brushless Generator Field Winding and Exciter Armature Winding ..32-18
32.21.5 Test Voltage—Brushless Exciter Field Winding ..32-18
32.22 Machine Sound Synchronous (Generators) ...32-18
32.22.1 Sound Quality ...32-18
32.22.2 Sound Measurement ..32-19
32.23 Vibration ...32-19

Manufacturing Data ..32-19
32.24 Nameplate Marking ..32-19
32.25 Shaft Extension Key ...32-20
32.26 Generator Terminal Housing ...32-20
32.26.1 When generators covered by this Part are provided with terminal housings for wire-to-wire connections, the housings shall have the following dimensions and usable volumes: ...32-20
32.26.2 For generators rated above 600 volts, accessory leads shall terminate in a terminal box or boxes separate from the generator terminal housing. As an exception, current and potential transformers located in the generator terminal housing shall be permitted to have their secondary connections terminated in the generator terminal housing if separated from the generator leads by a suitable physical barrier to prevent accidental contact. ..32-20
32.26.3 For generators rated 601 volts and higher, the termination of leads of accessory items normally operating at a voltage of 50 volts (rms) or less shall be separated from leads of higher voltage by a suitable physical barrier to prevent accidental contact, or shall be terminated in a separate box.32-21
32.27 Embedded Temperature Detectors ..32-21

See 20.28. ..32-21

© 2016 National Electrical Manufacturers Association
Application Data .. 32-21

32.29 Parallel Operation ... 32-21
32.30 Calculation of Natural Frequency ... 32-21
32.31 Torsional Vibration .. 32-21
32.32 Machines Operating on an Ungrounded System ... 32-21
32.33 Service Conditions .. 32-22
 32.33.1 General .. 32-22
 32.33.2 Usual Service Conditions .. 32-22
 32.33.3 Unusual Service Conditions ... 32-22
32.34 Neutral Grounding ... 32-23
32.35 Stand-by Generator .. 32-23
32.36 Grounding Means for Field Wiring .. 32-23
 Table 32-5 Minimum Size Grounding Conductor Termination ... 32-24

Section IV Performance Standards Applying to All Machines

Part 33 Definite Purpose Synchronous Generators for Generating Set Applications 33-1

33.0 Scope ... 33-1
33.1 Definitions ... 33-1
 33.1.1 Rated Output Power ... 33-1
 33.1.2 Rated Speed of Rotation n .. 33-2
33.1.3 Voltage Terms .. 33-2
 33.1.3.5 Transient Voltage Regulation ... 33-3
 33.1.3.6 Voltage Dip (V₁) ... 33-3
 33.1.3.7 Voltage Rise .. 33-3
 33.1.3.8 Transient Voltage Overshoot (V₂) .. 33-3
 Figure 33-1 Generator Transient Voltage Versus Time for Sudden Load Change 33-4
 33.1.3.18 Deviation Factor .. 33-5
 33.1.4 Performance Classes .. 33-5
33.2 Ratings .. 33-6
 33.2.1 Power Factor .. 33-6
 33.2.2 Kilovolt - Ampere (kVA) and Kilowatt (kW) Ratings .. 33-6
 Table 33-1 Kilovolt-Ampere and Kilowatt Ratings ... 33-6
 33.2.3 Speed .. 33-7
 Table 33-2 Speed Ratings ... 33-7
33.2.4 Voltage .. 33-7
33.2.5 Frequencies .. 33-8
33.3 Performance ... 33-8

© 2016 National Electrical Manufacturers Association
33.3.1 Voltage and Frequency Variation ... 33-8
33.3.2 Limits of Temperature and Temperature Rise ... 33-9
Table 33-3 Temperature Rise .. 33-10
33.3.3 Special Load Conditions .. 33-12
33.3.4 Power Quality ... 33-13
33.3.4.1.2 Residual Component TIF .. 33-14
Table 33-4 TIF — according to the 1960 single frequency weighting 33-15
Table 33-5 Harmonic Weighting Factors for Thf .. 33-16
Figure 33-2 Weighting Curve for Computing Thf .. 33-17
Table 33-6 Electromagnetic Disturbance Limits for Brushless Generators 33-19
Table 33-7 Electromagnetic Disturbance Limits for Generators with Brushes 33-19
33.3.5 Overspeed .. 33-19
33.3.6 Machine Sound .. 33-20
33.3.7 Linear Vibration .. 33-20
33.3.8 Testing ... 33-20
33.3.9 Performance Specification Forms ... 33-20
Slip-Ring Synchronous Generator Rating ... 33-23
Brushless Synchronous Generator Rating ... 33-24
33.4 Applications .. 33-25
33.4.1 Service Conditions ... 33-25
33.4.2 Transient Voltage Performance ... 33-26
Figure 33-3 Generator Transient Voltage Versus Time for Sudden Load Change 33-28
Figure 33-4 Performance Curves (Pf ≤ 0.3) (Step Loading) 33-30
33.4.2.5 Performance Limits .. 33-30
33.4.3 Torsional Vibration .. 33-31
33.4.4 Generator Grounding .. 33-31
33.4.5 Cyclic Irregularity .. 33-32
33.4.6 Application Criteria ... 33-32
33.4.6.2.2.1 Parallel Operation of Generating Sets .. 33-33
33.4.6.2.2.2 Operation in Parallel with Power Mains ... 33-33
33.5 Manufacturing .. 33-34
33.5.1 Nameplate Marking ... 33-34
33.5.2 Terminal Housings ... 33-35
Foreword

The standards appearing in this publication have been developed by the Motor and Generator Section and approved for publication as standards of the National Electrical Manufacturers Association. They are intended to assist users in the proper selection and application of motors and generators. These standards are revised periodically to provide for changes in user needs, advances in technology, and changing economic trends. All persons having experience in the selection, use, or manufacture of electric motors and generators are encouraged to submit recommendations that will improve the usefulness of these standards. Inquiries, comments, and proposed or recommended revisions should be submitted to the Motor and Generator Section by contacting:

Senior Technical Director, Operations
National Electrical Manufacturers Association
1300 North 17th Street, Suite 900
Rosslyn, VA 22209

The best judgment of the Motor and Generator Section on the performance and construction of motors and generators is represented in these standards. They are based upon sound engineering principles, research, and records of test and field experience. Also involved is an appreciation of the problems of manufacture, installation, and use derived from consultation with and information obtained from manufacturers, users, inspection authorities, and others having specialized experience. For machines intended for general applications, information as to user needs was determined by the individual companies through normal commercial contact with users. For some motors intended for definite applications, the organizations that participated in the development of the standards are listed at the beginning of those definite-purpose motor standards.

Practical information concerning performance, safety, test, construction, and manufacture of alternating-current and direct-current motors and generators within the product scopes defined in the applicable section or sections of this publication is provided in these standards. Although some definite-purpose motors and generators are included, the standards do not apply to machines such as generators and traction motors for railroads, motors for mining locomotives, arc-welding generators, automotive accessory and toy motors and generators, machines mounted on airborne craft, etc.

In the preparation and revision of these standards, consideration has been given to the work of other organizations whose standards are in any way related to motors and generators. Credit is hereby given to all those whose standards may have been helpful in the preparation of this volume.

NEMA MG 1-2014 is a revision of MG 1-2011. Prior to publication, the NEMA Standards and Authorized Engineering Information that appear in this publication unchanged since the preceding edition were reaffirmed by the Motor and Generator Section.

The standards or guidelines presented in a NEMA standards publication are considered technically sound at the time they are approved for publication. They are not a substitute for a product seller’s or user’s own judgment with respect to the particular product referenced in the standard or guideline, and NEMA does not undertake to guaranty the performance of any individual manufacturer’s products by virtue of this standard or guide. Thus, NEMA expressly disclaims any responsibility for damages arising from the use, application, or reliance by others on the information contained in these standards or guidelines.
This standards publication was developed by the Motors and Generator Section. Section approval of the standard does not necessarily imply that all section members voted for its approval or participated in its development. At the time it was approved, the Motors and Generator Section was composed of the following members:

Baldor Electric A Member of the ABB Group—Fort Smith, AR
Bluffton Motor Works—Bluffton, IN
Brook Crompton North America—Toronto, ON
Cummins, Inc.—Minneapolis, MN
GE Industrial Solutions - Plainville, CT
Nidec Motor Corporation - Saint Louis, MO
NovaTorque, Inc. - Fremont, CA
Ram Industries—Leesport, PA
Regal-Beloit Corporation—Beloit, WI, composed of:
 Electra-Gear—Union Grove, WI
 Leeson Electric—Grafton, WI
 Lincoln Motors—Cleveland, OH
 Marathon Electric Manufacturing Corporation—Wausau, WI
Schneider Electric - Palatine, IL
SEW-Eurodrive, Inc.—Lyman, SC
Siemens Industry, Inc.—Norcross, GA
Sterling Electric, Inc.—Indianapolis, IN
TECO-Westinghouse Motor Co.—Round Rock, TX
Toshiba International Corporation—Houston, TX
WEG Electric Motor Corp.—Duluth, GA