

ANSI/NEMA HP 6-2021 ANSI Approval Date: July 6, 2021

American National Standard Electrical and Electronic Silicone and Silicone Braided Insulated, Hook-Up Wire, Types S (600 V), ZHS (600 V), SS (1000 V), ZHSS (1000 V), SSB Braided (1000V) and ZHSSB Braided (1000 V)

Published by

National Electrical Manufacturers Association 1300 North 17th Street, Suite 900 Rosslyn, Virginia 22209

www.nema.org

© 2021 National Electrical Manufacturers Association. All rights including translation into other languages, reserved under the Universal Copyright Convention, the Berne Convention for the Protection of Literary and Artistic Works, and the International and Pan American Copyright Conventions.

NOTICE AND DISCLAIMER

The information in this publication was considered technically sound by a consensus among persons engaged in its development at the time it was approved. Consensus does not necessarily mean there was unanimous agreement among every person participating in the development process.

The National Electrical Manufacturers Association (NEMA) Standards and guideline publications, of which the document herein is one, are developed through a voluntary Standards development process. This process brings together volunteers and/or seeks out the views of persons who have an interest in the topic covered by this publication. Although NEMA administers the process and establishes rules to promote fairness in the development of consensus, it does not write the documents, nor does it independently test, evaluate, or verify the accuracy or completeness of any information or the soundness of any judgments contained in its Standards and guideline publications.

NEMA disclaims liability for any personal injury, property, or other damages of any nature, whether special, indirect, consequential, or compensatory, directly or indirectly resulting from the publication, use of, application, or reliance on this document. NEMA disclaims and makes no guaranty or warranty, express or implied, as to the accuracy or completeness of any information published herein, and disclaims and makes no warranty that the information in this document will fulfill any particular purpose(s) or need(s). NEMA does not undertake to guarantee the performance of any individual manufacturer's or seller's products or services by virtue of this Standard or guide.

In publishing and making this document available, NEMA is not undertaking to render professional or other services for or on behalf of any person or entity, nor is NEMA undertaking to perform any duty owed by any person or entity to someone else. Anyone using this document should rely on his or her own independent judgment or, as appropriate, seek the advice of a competent professional in determining the exercise of reasonable care in any given circumstance. Information and other Standards on the topic covered by this publication may be available from other sources, which the user may wish to consult for additional views or information not covered by this publication.

NEMA has no power, nor does it undertake to police or enforce compliance with the contents of this document. NEMA does not certify, test, or inspect products, designs, or installations for safety or health purposes. Any certification or other statement of compliance with any health- or safety-related information in this document shall not be attributable to NEMA and is solely the responsibility of the certifier or maker of the statement.

Contents

	Forew	/ord	İ۷	
Section 1	General			
	1.1 Scope			
		1.2 Referenced Standards and Specifications		
	1.3 Re	1.3 Recommended Uses of Wire Types		
	1.3.1	Type S	.2	
	1.3.2	Type SS	.2	
	1.3.3	Type SSB	.2	
	1.3.4	Type ZHS	.2	
	1.3.5	Type ZHSS	.2	
	1.3.6	Type ZHSBS	.3	
	1.4 Pa	art Identification Number (PIN)	.3	
Section 2	Condu	ctors	.5	
	2.1 Cd	onductor Materials	.5	
	2.2 Cd	onductor Coatings	.5	
	2.2.1	Tin-Coated Conductors	.5	
	2.2.2	Silver-Coated Conductors	.5	
	2.3 St	randing	.5	
	2.4 Mi	nimum Wire Diameter	.5	
	2.5 Cd	onductor Splices	.5	
Section 3		oneneral		
	3.2 Si	licone Rubber Insulation	.6	
	3.3 Br	aid Material	.6	
Section 4		lentificationrcuit Identification		
	4.1.1	Lay of Stripes	.9	
	4.2 ld	entification by Printing	.9	
	4.2.1	Identification of Product	.9	

Section 5 Physical and Electrical Requirements		
5.2 Quality Conformance Inspection of Finished Product	10	
5.2.1 Definitions	10	
5.2.2 Sampling Inspection	10	
5.3 Workmanship	10	
5.4 Materials Certification	10	
Section 6 Test Procedures 6.1 Physical Tests.		
6.1.1 Test Temperature	13	
6.1.2 Heat Resistance	13	
6.1.3 Insulation Tensile Strength and Elongation	13	
6.1.4 Dimensional Inspection	13	
6.1.5 Flammability	14	
6.1.6 Cold Bend	14	
6.1.7 Halogen Content	15	
6.1.8 Smoke Index	15	
6.1.9 Toxicity Index	15	
6.1.10 Acid Gas	15	
6.2 Electrical Tests	15	
6.2.1 Conductor Resistance	16	
6.2.2 Spark or Impulse Test	16	
6.2.3 Dielectric Strength	16	
6.2.4 Insulation Resistance	16	
6.2.5 Surface Resistance (for Wires with Outer Braid Only)	16	
Section 7 Notes		
7.2 Labeling		
7.3 Lengths	17	
Section 8 Ordering Data	18	

	8.1 Ordering Information	18
Tables		
1-1	Conductor Material and Coating	3
1-2	AWG Nominal Conductor Size	3
1-3	Number of Strands	3
1-4	Color	4
3-1	Dimensions-Type Wires	6
3-2	Outside Diameter Increase Due to Braid	
4-1	Length of Lay of Stripes	9
5-1	Physical and Electrical Requirements for Type S, SS, and SSB Wires	
6-1	Cold Bend Mandrel, Sizes Type S and ZHS	
6-2	Cold Bend Mandrel, Sizes Type SS, ZHSS, SSB and ZHSSB	
7-1	Minimum Lengths	

Foreword

This Standard publication was developed by the NEMA High Performance Wire and Cable Section. It was developed to assure that these types of hook-up wire can be procured and that they will meet requirements associated with high reliability commercial electrical and electronic equipment in which it is used. Compliance with provisions of this Standards Publication is strictly voluntary, and any certification of compliance is left to the discretion of the buyer and seller.

In the preparation of this Standards publication, the input of users and other interested parties has been sought and evaluated. Inquiries, comments, and proposed or recommended revisions should be submitted to the High Performance Wire and Cable Product Section by contacting the:

NEMA Technical Operations Department National Electrical Manufacturers Association 1300 North 17th Street, Suite 900 Rosslyn, Virginia 22209

This Standards publication was designed as a non-government Standard for the replacement of MIL-W-16878 Silicone Rubber Insulated Wire Slash Sheets (/7, /8, /29 through /32).

This Standards publication was developed by the NEMA High Performance Wire and Cable Section Aerospace Committee. Section approval of the Standard does not necessarily imply that all section Members voted for its approval or participated in its development. At the time it was approved, the section was composed of the following Members:

Name		Organization
Oscar	Castellanos	Cable USA LLC, a Marmon Wire & Cable, Berkshire Hathaway Company
David	Dexter	Champlain Cable Corporation
Rick	Antic	Champlain Cable Corporation
Richard	Trahan	Champlain Cable Corporation
Kevin	Coderre	Marmon Aerospace & Defense
Peter	Schlichting	Quirk Wire Company, Inc.
Ashley	Clark	Quirk Wire Company, Inc.
William	Thomas	SEA Wire and Cable, Inc.
Mike	Kearney	Specialty Cable Corporation
Jeff	Schroeder	Specialty Cable Corporation
Jonathan	Bauer	TE Connectivity
Cathy	Dutton	TE Connectivity
Robert	Moore	TE Connectivity / AD&M Wire and Cable
William	Crawford	The Okonite Company

Bruce	Sellers	The Okonite Company
Rush	Holladay	WireMasters, Inc.
Nathan	Christiansen	WireMasters, Inc.
Chris	Sayler	WireMasters, Inc.
Caleb	Thurman	WireMasters, Inc.

This Standard was processed and approved for submittal to ANSI by the NEMA C8 Committee on Insulated Wire and Cables, Excluding Magnet Wire. Committee approval of the Standard does not necessarily imply that all committee Members voted for its approval. At the time it approved this Standard, the C8 committee had the following Members:

First Name	Last Name	Organization
Kenneth	Bow	Kable Consult LLC
Lauri	Hiivala	Power Cable Consultant
Trung	Hiu	USDA Rural Development Utilities Programs
Michael	Kinard	Consultant
Anthony	Tassone	UL LLC
Todd	Taylor	Enfinity Engineering
Gerald	Dorna	Belden
Christel	Hunter	Cerrowire
Kevin	Porter	Encore Wire Corporation
Michael	Stover	Optical Cable Corporation
Henson	Toland	OFS Fitel
David	Watson	Southwire Company
Jared	Weitzel	Prysmian Group
Lee	Perry	Service Wire Company
Nigel	Hampton	NEETRAC
Ewell	Robeson	Carolina Power & Light

Section 1 General

1.1 Scope

This Standard publication covers specific requirements for silicone rubber insulated stranded wire, designed for the internal wiring of high reliability electrical and electronic equipment. This Standards publication addresses 600 V (Type S, ZHS) and 1000 V (Type SS, ZHSS, SSB, and ZHSSB) wire and permits continuous conductor temperature ratings of –55°C to +150°C with tin-coated copper or –55°C to +200°C with silver-coated copper. These types of hook-up wire are used when the following requirements are called for:

- a. High-temperature resistance
- b. Low-temperature resistance
- c. Good flexibility and flex life
- d. Solder iron resistance for easier solder terminations without potential damage
- e. Type ZHS, ZHSS, and ZHSSB are used for applications requiring low smoke and zero halogen requirements