Annex 2 | Recommended Processes to Support Accurate Reporting of SF₆ Emissions

While current data is somewhat limited, empirical information suggests that a large percentage of currently installed gas insulated equipment (GIE) contains a different amount of SF₆ compared to what is indicated on the nameplate. Data collected an SF₆ management and maintenance firm shows that out of 221 high voltage circuit breakers – ranging from 34.5 kV to 500 kV – tested over a period of 36 months, only six (6) contained actual SF₆ mass that was within the 1% of the figure on the nameplate. This discrepancy is attributable either to filling error or an inaccurate stated nameplate capacity. The purpose of this document is to provide GIE users with a step-by-step process to determine actual SF₆ weight and to verify nameplate accuracy.

Section 1: Reporting Requirement

GIE users are required to report SF₆ emissions by the U.S. Environmental Protection Agency’s Greenhouse Gas Reporting Rule Subpart DD. Regulatory agencies in California and Massachusetts require reporting as well. The formula for calculating emissions to all three entities is as follows:

\[
\text{User Emissions} = (\text{Decrease in Storage Inventory}) + (\text{Acquisitions}) - (\text{Disbursements}) - (\text{Net increase in Total Nameplate Capacity of Equipment Operated})
\]

To ensure better accuracy when reporting greenhouse gas emissions, and to eliminate the reporting of “Phantom Emissions“, users of GIE not only must have a way to accurately determine the actual charge of SF₆ in any given GIE within their inventory, but also must be able to identify whether the stated nameplate capacity is accurate. And in cases where the nameplate is not accurate, users should be able to correct the nameplate value for purposes of reporting (e.g. substitute the correct nameplate capacity for the stated). The Electric Transmission and Distribution SF₆ Coalition hopes that state and federal regulatory agencies will be open to allowing operators the option to use the figures derived from these processes for reporting purposes should they choose to do so.

In order to reduce the likelihood of error we strongly recommend that operators use the following tools:

- Temperature/Pressure curve or chart provided by GIE OEM
- Precision Temperature gauge (accuracy +/- 1.0°F)
- Precision pressure gauge (accuracy +/- 0.5% of complete scale) – requires at least 2 digits past decimal point – should read in absolute values
- Mass flow scale (Accuracy +/- 0.1 lbs.) – requires at least 2 digits past decimal point
- SF₆ Recovery System capable of achieving a blank-off pressure of 3.5 Torr or less

For each of the following processes, it is highly recommended that the GIE be de-energized. After the process is complete the user should follow the manufacturer’s instructions to re-energize or de-commission the GIE, as appropriate.
Section 2: How to Identify Exact Weight of SF₆ in GIE

There are two (2) possible processes to determine the exact amount of SF₆ in any vessel:

1. Pressure/Mass Calculation. This process entails removing a small amount of SF₆ that is then weighed, while monitoring the initial and final pressure.)

Procedure:

- Step 1. Record the initial system pressure (a) using a precision pressure gauge
- Step 2. Connect evacuated hose (no longer than 3’ with ¼” diameter) to primary side of mass flow scale / use inline T-piece with precision gauge
- Step 3. Connect secondary side to evacuated cylinder
- Step 4. Open GIE valve (or connect to GIE quick connect) and remove a minimum of 2 lbs. as well as a minimum differential of 2 psi (c) (Note: Record all readings with a minimum of two (2) digits past decimal point).
- Step 5. Record final system pressure (b) using precision pressure gauge
- Step 6. Calculate total mass of SF₆ in the vessel per the following formula:

 \[\text{Total mass of SF}_6 \text{ in vessel} = \frac{c \times a}{a-b} \]

 where:

 a = Initial system pressure (psi absolute)
 b = Final system pressure (psi absolute)
 c = Amount of SF₆ removed

2. Complete SF₆ Recovery: This process entails removal of all the SF₆ either during GIE maintenance or decommissioning and then precise weighing of the gas during the process. Based on feedback from some members of the utilities industry, this option seems to be preferred.

Procedure:

- Step 1. Record the initial system pressure using precision pressure gauge
- Step 2. Connect evacuated hose to primary side of mass flow scale, and another hose from the secondary to the inlet of the SF₆ Recovery System
- Step 3. Recover the SF₆ to a blank-off pressure of < 3.5 Torr
- Step 4. Verify that GIE pressure is < 3.5 Torr after a 5 minute hold
- Step 5. Record the final system pressure using precision pressure gauge
Step 6. Mass shown on mass flow scale is the total amount of SF$_6$ in the vessel

Note: Amount of SF$_6$ (mass) weight is to be measured at the GIE’s fill valve and on the primary side of any recovery system. As cylinder tare weights are known to be inaccurate, using conventional gas/cylinder weighing scales is not recommended.

Section 3: How to Verify Nameplate Accuracy of GIE

This process is similar to “Complete SF$_6$ Recovery” discussed in the previous section, but adds a new step (2) and follows a formula as indicated below.

Procedure:

Step 1. Record the initial system pressure (a) using precision pressure gauge

Step 2. Convert the initial system pressure to temperature compensated initial system pressure (d) by accurately measuring the vessel temperature and using the OEM temperature/pressure curve or filling data to compensate the initial system pressure to rated fill temperature (usually 68°F (20°C))

Step 3. Connect evacuated hose to primary side of mass flow scale, and another hose from the secondary to the inlet of the SF$_6$ Recovery System

Step 4. Recover the SF$_6$ to a blank-off pressure of < 3.5 Torr (c)

Step 5. Verify that GIE pressure is < 3.5 Torr after a 5 minute hold

Step 6. Record final system pressure (b) using precision pressure gauge

Step 7. Determine the corrected nameplate value using the following formula:

\[
\text{Corrected nameplate mass value} = \frac{c \times a}{a-b} \times \frac{e}{d}
\]

where:

- a = Initial system pressure (psi absolute)
- b = Final system pressure (psi absolute)
- c = Mass of SF$_6$ recovered
- d = Temperature compensated initial system pressure (psi absolute)
- e = Rated fill pressure at rated temperature (psi absolute) – taken from nameplate

Note: Amount of SF$_6$ (mass) weight is to be measured at the GIE’s fill valve and on the primary side of any recovery system. As cylinder tare weights are known to be inaccurate, using conventional gas/cylinder weighing scales is not recommended.