Approved as an American National Standard
ANSI Approval Date: May 1, 2008

NEMA Standard Publication No. WC 58-2008
ICEA Standard Publication No. S-75-381-2008

Portables and Power Feeder Cables for Use in Mines and Similar Applications

Published by:
National Electrical Manufacturers Association
1300 North 17th Street, Suite 1752
Rosslyn, Virginia 22209

www.nema.org

© Copyright 2008 by the National Electrical Manufacturers Association and the Insulated Cable Engineers Association. All rights including translation into other languages, reserved under the Universal Copyright Convention, the Berne Convention for the Protection of Literary and Artistic Works, and the International and Pan American Copyright Conventions.
NOTICE AND DISCLAIMER

The information in this publication was considered technically sound by the consensus of persons engaged in the development and approval of the document at the time it was developed. Consensus does not necessarily mean that there is unanimous agreement among every person participating in the development of this document.

The National Electrical Manufacturers Association (NEMA) standards and guidelines publications, of which the document contained herein is one, are developed through a voluntary consensus standards development process. This process brings together volunteers and/or seeks out the views of persons who have an interest in the topic covered by this publication. While NEMA administers the process and establishes rules to promote fairness in the development of consensus, it does not write the document and it does not independently test, evaluate, or verify the accuracy or completeness of any information or the soundness of any judgments contained in its standards and guideline publications.

NEMA disclaims liability for any personal injury, property, or other damages of any nature whatsoever, whether special, indirect, consequential, or compensatory, directly or indirectly resulting from the publication, use of, application, or reliance on this document. NEMA disclaims and makes no guarantee or warranty, expressed or implied, as to the accuracy or completeness of any information published herein, and disclaims and makes no warranty that the information in this document will fulfill any of your particular purposes or needs. NEMA does not undertake to guarantee the performance of any individual manufacturer or seller's products or services by virtue of this standard or guide.

In publishing and making this document available, NEMA is not undertaking to render professional or other services for or on behalf of any person or entity, nor is NEMA undertaking to perform any duty owed by any person or entity to someone else. Anyone using this document should rely on his or her own independent judgment or, as appropriate, seek the advice of a competent professional in determining the exercise of reasonable care in any given circumstances. Information and other standards on the topic covered by this publication may be available from other sources, which the user may wish to consult for additional views or information not covered by this publication.

NEMA has no power, nor does it undertake to police or enforce compliance with the contents of this document. NEMA does not certify, test, or inspect products, designs, or installations for safety or health purposes. Any certification or other statement of compliance with any health or safety-related information in this document shall not be attributable to NEMA and is solely the responsibility of the certifier or maker of the statement.
Section 4

CONSTRUCTIONS OF MINE POWER FEEDER CABLE

4.1 Scope .. 49
4.2 General Requirements .. 49
4.3 Conductors .. 49
 4.3.1 Power Conductors .. 49
 4.3.2 Conductor Stress Control Layer .. 50
 4.3.3 Grounding Conductors .. 50
 4.3.4 Ground-Check Conductor .. 50
4.4 Insulation ... 50
 4.4.1 Power Conductor .. 50
 4.4.2 Ground-Check Conductor .. 50
4.5 Insulation Shielding ... 50
 4.5.1 Nonmetallic Covering .. 50
 4.5.2 Metal Component ... 51
4.6 Identification .. 52
4.7 Conductor Assembly .. 52
4.8 Jacket ... 52
4.9 Outside Diameter .. 52
4.10 Tests .. 52

© Copyright 2008 by the National Electrical Manufacturers Association
and the Insulated Cable Engineers Association
Section 5 SPECIAL CONSTRUCTIONS

5.1 Portable Arc-Welding Cables .. 58
 5.1.1 Scope ... 58
 5.1.2 Conductor ... 58
 5.1.3 Separator ... 58
 5.1.4 Jackets .. 58
 5.1.5 Number of Wires, Outside Diameters, and Diameter Tolerances ... 58
 5.1.6 Flame Test Requirements ... 58

Section 6 TESTING AND TEST METHODS ... 63

6.1 Testing ... 63
6.2 Tests on Samples ... 63
6.3 Conductor Test Methods .. 63
 6.3.1 Method for DC Resistance Determination .. 63
 6.3.2 Methods for Cross-Sectional Area Determination 63
 6.3.3 Methods for Diameter Determination 64
6.4 Test Samples and Specimens for Physical and Aging Tests 64
 6.4.1 General ... 64
 6.4.2 Number of Thickness Measurements 64
 6.4.3 Measurement of Thickness ... 64
 6.4.4 Sampling of Insulation for Physical and Aging Tests 64
 6.4.5 Sampling of Jacket for Physical and Aging Tests 64
 6.4.6 Number of Test Specimens .. 64
 6.4.7 Size of Specimens ... 65
 6.4.8 Preparation of Specimens of Insulation and Jacket 65
 6.4.9 Specimens with Thin Jackets Crosslinked to Insulation 65
 6.4.10 Specimen for the Tear Test ... 65
 6.4.11 Specimen for Accelerated Aging Test 66
 6.4.12 Calculation of Area of Test Specimens 66
 6.4.13 Physical Test Procedures ... 66
 6.4.14 Aging Test .. 66
 6.4.15 Physical Tests for Semi Conducting Material Intended for Extrusion 67
 6.4.16 Retests for Physical and Aging Properties and Thickness 67
6.5 Capacity and Power Factor Tests .. 68
6.6 Accelerated Water Absorption .. 68
 6.6.1 General ... 68
 6.6.2 Electrical Method (EM-60) ... 68
6.7 Surface Resistance ... 68
6.8 Thickness of Tapes ... 68
6.9 Heat (Deformation) Distortion ... 68
6.10 Heat Shock ... 69
6.11 Cold Bend ... 69
6.12 Hot Creep Test .. 69
6.13 Solvent Extraction .. 69
6.14 Volume Resistivity .. 69
 6.14.1 Test Samples .. 69
6.15 Stripping Test .. 69
6.16 Retests for Tests Covered by 6.6 through 6.15 And 6.20 70
6.17 Electrical Tests on Completed Cables .. 70
 6.17.1 Voltage Tests .. 69
 6.17.2 Insulation Resistance .. 71
 6.17.3 Partial-Discharge Test Procedure ... 71
6.18 Method Determining Permittivity (S.I.C.) and Dielectric Strength of Extruded
 Nonconducting Polymeric Stress Control Layers 71

© Copyright 2008 by the National Electrical Manufacturers Association
and the Insulated Cable Engineers Association
3-19 2,001 To 5,000 Volts Type G Three-Conductor Round Portable Power Cables 40
3-20 Type SH Single-Conductor Portable Power Cables for 100 Percent Insulation Level Only ... 41
3-21 2,000 Volts or Less Type SHC-GC Three-Conductor Round Portable Power Cables for 100
Percent Insulation Level Only ... 42
3-22 Type SHD and SHD-GC Three-Conductor Round Portable Power Cables for 100 Percent
Insulation Level Only .. 43
3-23 Type SHD-CGC Three-Conductor Portable Power Cables with Three Grounding
Conductors and One Ground-Check Conductor .. 45
3-24 Jacket Thicknesses for Types fnd Sizes of Round Portable Cables not Covered by
Tables 3-6 through 3-23 and 3-26 ... 46
3-25 Conductors ... 47
3-26 Type SHD-PCG Cable .. 48
3-27 2,000 Volts or Less Type SHD-Flat Three Conductor Portable Power Cable with Two
Grounding Conductors .. 48

Tables
4-1 Conductor Sizes .. 53
4-2 Insulation Thicknesses and Outside Diameters—2,001 to 5,000 Volts 100 and 133 Percent
Insulation Levels ... 53
4-3 Insulation Thicknesses and Outside Diameters 5,001 to 8,000 Volts 54
4-4 Insulation Thicknesses and Outside Diameters 8,001 to 15,000 Volts 54
4-5 Insulation Thicknesses and Outside Diameters 15,001 to 25,000 Volts 55
4-6 Partial Discharge Extinction Voltage .. 55
4-7 Overall Jacket Thickness .. 55
4-8 Nominal DC Resistance of Medium Hard-Drawn Coated and Uncoated Copper Conductors
Concentric Stranded, Class B and C .. 56
4-8 (metric) .. 56
4-9 Thermoplastic Jacket Requirements ... 57
5-1 Heavy-Duty Jackets (Type A) ... 60
5-2 Medium-Duty Jackets (Type B) ... 61
5-3 Construction Details ... 62
6-1 Number of Samples ... 63
6-2 Number of Test Specimens .. 65
H-1 Ampacities for Portable Power Cables, Amperes per Power Conductor 83
I-1 Ampacities for Three-Conductor Mine Power Cables 84
J-1 DC Test Voltages after Installation, kV .. 85
K-1 Concentric Stranded Class B Aluminum and Copper Conductors 86
K-2 Concentric Stranded Class C and D Aluminum and Copper Conductors 87
K-3 Rope-Lay Copper Conductors Class G ... 88
K-4 Rope-Lay Copper Conductors Class H ... 89
K-5 Copper Conductors Class I – Each Individual Strand 24 AWG, 0.0201 Inch (0.511 mm) 90
K-6 Copper Conductors Class K – Each Individual Strand 30 AWG, 0.0100 Inch (0.254 mm) ... 91
K-7 Copper Conductors Class M – Each Individual Strand 34 AWG, 0.0063 Inch (0.160 mm) 92

© Copyright 2008 by the National Electrical Manufacturers Association
and the Insulated Cable Engineers Association
FOREWORD

This Standards Publication for Mining Cable was developed by the Insulated Cable Engineers Association, Incorporated (ICEA) and was approved by the National Electrical Manufacturers Association (NEMA).

ICEA/NEMA Standards are adopted in the public interest and are designed to eliminate misunderstandings between the manufacturers and the user and to assist the user in selecting and obtaining the proper product for his or her particular need. Existence of an ICEA/NEMA standard does not in any respect preclude the manufacture or use of products not conforming to the standard. The user of this Standards Publication is cautioned to observe any health or safety regulations and rules relative to the use of cable made in conformity with this Standard.

Requests for interpretation of this Standard must be submitted in writing to:

Insulated Cable Engineers Association, Inc.
P.O. 1568
Carrollton, GA 30112

An official interpretation will be made by the Association.

Suggestions for improvement gained in the use of this publication will be welcomed by the Association.

Working Group Members:

Barry L. Fisher
David L. Fox (deceased)
Mark A. Fuller
L. Drayton Land
Marcel Levitre
Frank LeGase

IN MEMORY

The rewriting of this standard was initiated and diligently pursued by Mr. David Fox of AmerCable Inc. Through his efforts and countless hours invested, publishing of this work was made possible. We would like to both remember David and thank David’s family, wife Lis and daughter Stephanie, for the valuable contribution he made to our industry and in the development of this specification.
Section 1
GENERAL

1.1 SCOPE

These standards apply to materials, construction, and testing of insulated cables used for the utilization of electrical energy in surface and underground mines and similar applications. Included are portable cables for use in mining machines, dredges, shovels and similar equipment, and mine power cables for use as connections between units of mine distribution systems. The cables are of the following types:

PORTABLE CABLES 2,000 VOLTS OR LESS

<table>
<thead>
<tr>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>W</td>
<td>W without grounding conductors</td>
</tr>
<tr>
<td>G</td>
<td>G with grounding conductors</td>
</tr>
<tr>
<td>G-GC</td>
<td>G-GC with grounding conductors and one ground-check conductor</td>
</tr>
<tr>
<td>G-CGC</td>
<td>G-CGC with grounding conductors and one ground-check conductor in center</td>
</tr>
<tr>
<td>PG</td>
<td>PG with single grounding conductor</td>
</tr>
<tr>
<td>PCG</td>
<td>PCG with single grounding conductor and two control conductors</td>
</tr>
<tr>
<td>SHC-GC</td>
<td>SHC-GC multiconductor with grounding conductors, one ground check conductor and overall shield</td>
</tr>
<tr>
<td>SHD-PCG</td>
<td>SHD-PCG multiconductor with individually shielded power conductors, center grounding conductor, and one or more control conductors.</td>
</tr>
<tr>
<td>SHD Flat</td>
<td>SHD Flat multiconductor with individually shielded power conductors, and grounding conductors covered with a conducting extrusion layer.</td>
</tr>
</tbody>
</table>

PORTABLE CABLES 2,001–5,000 VOLTS (100% INSULATION LEVEL)

<table>
<thead>
<tr>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>G</td>
<td>G with grounding conductors</td>
</tr>
<tr>
<td>SHD-PCG</td>
<td>SHD-PCG multiconductor with individually shielded power conductors, center grounding conductor, and one or more control conductors.</td>
</tr>
</tbody>
</table>

PORTABLE CABLES 0–25,000 VOLTS (100% INSULATION LEVEL)

<table>
<thead>
<tr>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SH</td>
<td>SH shielded single conductor</td>
</tr>
<tr>
<td>SHD</td>
<td>SHD with individually shielded power conductors and grounding conductors</td>
</tr>
<tr>
<td>SHD-GC</td>
<td>SHD-GC with individually shielded power conductors, grounding conductors, and one ground-check conductor</td>
</tr>
<tr>
<td>SHD-CGC</td>
<td>SHD-CGC with individually shielded power conductors, grounding conductors, and one ground-check conductor in center</td>
</tr>
</tbody>
</table>

MINE POWER 2,001–25,000 VOLTS (100% AND 133% INSULATION LEVEL)

<table>
<thead>
<tr>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MP</td>
<td>MP with individually shielded power conductors and grounding conductors</td>
</tr>
<tr>
<td>MP-GC</td>
<td>MP-GC with individually shielded power conductors, grounding conductor, and one ground-check conductor</td>
</tr>
</tbody>
</table>