NEMA UD 2

ACOUSTIC OUTPUT MEASUREMENT STANDARD FOR DIAGNOSTIC ULTRASOUND EQUIPMENT, REVISION 3
NOTICE AND DISCLAIMER

The information in this publication was considered technically sound by the consensus of persons engaged in the development and approval of the document at the time it was developed. Consensus does not necessarily mean that there is unanimous agreement among every person participating in the development of this document.

The National Electrical Manufacturers Association (NEMA) standards and guideline publications, of which the document contained herein is one, are developed through a voluntary consensus standards development process. This process brings together volunteers and/or seeks out the views of persons who have an interest in the topic covered by this publication. While NEMA administers the process and establishes rules to promote fairness in the development of consensus, it does not write the document and it does not independently test, evaluate, or verify the accuracy or completeness of any information or the soundness of any judgments contained in its standards and guideline publications.

NEMA disclaims liability for any personal injury, property, or other damages of any nature whatsoever, whether special, indirect, consequential, or compensatory, directly or indirectly resulting from the publication, use of, application, or reliance on this document. NEMA disclaims and makes no guaranty or warranty, expressed or implied, as to the accuracy or completeness of any information published herein, and disclaims and makes no warranty that the information in this document will fulfill any of your particular purposes or needs. NEMA does not undertake to guarantee the performance of any individual manufacturer or seller’s products or services by virtue of this standard or guide.

In publishing and making this document available, NEMA is not undertaking to render professional or other services for or on behalf of any person or entity, nor is NEMA undertaking to perform any duty owed by any person or entity to someone else. Anyone using this document should rely on his or her own independent judgment or, as appropriate, seek the advice of a competent professional in determining the exercise of reasonable care in any given circumstances. Information and other standards on the topic covered by this publication may be available from other sources, which the user may wish to consult for additional views or information not covered by this publication.

NEMA has no power, nor does it undertake to police or enforce compliance with the contents of this document. NEMA does not certify, test, or inspect products, designs, or installations for safety or health purposes. Any certification or other statement of compliance with any health or safety–related information in this document shall not be attributable to NEMA and is solely the responsibility of the certifier or maker of the statement.
Section 5 DIAGNOSTIC ULTRASOUND MEASUREMENT PROCEDURES 43

5.1 Introduction ..43

5.2 Outline of Measurement Procedures ...43

5.3 Equipment and Setup ...45
 5.3.1 Equipment Required ..45
 5.3.2 Set-up ...46

5.4 Measurement of Intensities and Pressure in Non-Autoscan System51
 5.4.1 Reference Location for Intensity and Pressure Measurements51
 5.4.2 Select Operating Condition and Set Maximum Drive Voltage52
 5.4.3 Determine the Beam Axis ...52
 5.4.4 Find the Spatial Maximum Pulse Intensity Integral ...53
 5.4.5 Verification of Maximum PII($j, $v_{mj}, $z_{mj}PII) ...53
 5.4.6 Waveform Recording ...53
 5.4.7 Calculate the Spatial-Peak Pulse-Average Intensity (ISPPA)53
 5.4.8 Calculate the Peak Rarefractional Pressure (p_{r}) ...53
 5.4.9 Associated Parameters ..54
 5.4.10 Calculate the Spatial-Peak Temporal-Average Intensity (ISPTA)55

5.5 Hydrophone Calibration Above 20 MHz ..58

5.6 Spot Checks of Working Hydrophone ...59

5.7 Local Laboratory Checks of Reference Hydrophone ...60

5.8 The Comparison Procedure for the Working Hydrophone60

5.9 Planar Scanning Checks of Hydrophone ...60

5.10 Hydrophone Calibration Above 20 MHz ...60

5.11 Spot Checks of Working Hydrophone ...60

5.12 The Comparison Procedure for the Working Hydrophone60

5.13 Planar Scanning Checks of Hydrophone ...60

5.14 Hydrophone Calibration Above 20 MHz ...60

5.15 Spot Checks of Working Hydrophone ...60

5.16 The Comparison Procedure for the Working Hydrophone60

5.17 Planar Scanning Checks of Hydrophone ...60

5.18 Hydrophone Calibration Above 20 MHz ...60

© Copyright 2004 by the National Electrical Manufacturers Association.
5.4.18 Measurement Methods for Equipment Which Produces Continuous Waveforms ...60
5.5 Measurement for Intensity and Pressure in Autoscan Mode ...61
 5.5.1 Introduction to Autoscan Measurements in Combined Modes62
 5.5.2 Measurement of ISPTA in Combined Autoscan Modes63
5.6 Power Measurements ...64
 5.6.1 Force Balance Methods ..64
 Figure 5-9, Illustration of an R.F.B. Measurement of One Sequence of N = 5 Cycles66
 5.6.2 Alternate Power Measurement/Calculation Using a Hydrophone and Planar Scanning in Non-Autoscan Mode ..71
 Figure 5-10, Suggested 1 cm Wide Aperture Mask ..74
 Figure 5-11, Suggested Orientation of Probe, Mask Slit, and RFB Target74
 Figure 5-12, Suggested Orientation of Probe, Mask Slit, and 1 cm RFB Target75

APPENDICES
A Statistical Considerations ..76
B Nonlinear Effects ..98
C Directivity of Hydrophone ...102
D Acoustical Output Quantities in Water and in Tissue Models; Derated Values104
E Water Degassing Procedure ..109
F Rationale for the Measurement of Selected Parameters ..110
G Determination of Control Settings Resulting in Intensity and Pressure Global Maxima 112
H Hydrophone Calibration by Planar Scanning Technique ..114
I Consistency Checks ...122
J Measurement of ISPTA for a Combined Operating Mode ..125
K Rationale for Measurements in Water ..127
Foreword to Acoustic Output Measurement Standard for Diagnostic Ultrasound Equipment, Revision 3

This is the initial revision of the 1998 Acoustic Output Measurement Standard for Diagnostic Ultrasound Equipment. The most noteworthy change in this document is the revision of Appendix A, Statistical Considerations. Included in this revised appendix are discussions of the one-sided tolerance limit for normal distributions, Type A and Type B uncertainty specifications, and multiple console/transducer combinations for a particular model, all topics that were not addressed in the previous version. In addition, minor notational and typographical corrections were made to the standard.

Special thanks for this revision go to the Output Standards Subcommittee (OSS), a joint AIUM/NEMA task group formed by the AIUM Technical Standards Committee. In particular, Marvin Ziskin is thanked for his spearheading the revision of Appendix A. The current co-chairs of the OSS are Paul Carson and Mark Schafer. The previous co-chairs were Gerald Harris and Charles Hottinger. Past and current subcommittee members, in addition to the past and current co-chairs, are John Abbott, Paul Biggins, Chris Bohl, Barbara Campbell, Anupam Dattamajumdar, David Dea, Richard Eaton, Peter Edmonds, Jim Gessert, Peng Jiang, Peter Lewin, Michael Macdonald, Ernest Madsen, Dennis Mendoza, Kathy Meschisen, Kurt Sandstrom, Paul Smolenski, Terry Sweeney, Jinxing Tan, Tat-Jin Teo, Kai Thomenius, Junru Wu, Jim Zagzebski, Qian Zhang, and Marvin Ziskin.

Karen Ophir
Chair, AIUM Technical Standards Committee
Foreword to the Acoustic Output Measurement Standard for Diagnostic Ultrasound Equipment, May 1998

In 1996, the decision was made to break the measurement and labeling parts of the Acoustic Output Measurement and Labeling Standard for Diagnostic Ultrasound Equipment (AIUM,1993) into two separate documents. The resulting measurements standard, the Acoustic Output Measurement Standard for Diagnostic Ultrasound Equipment, is now fully harmonized with and identical to its sister NEMA document, the Acoustic Output Measurement Standard for Diagnostic Ultrasound Equipment (UD 2), Revision 2. The new labeling document, the Acoustic Output Labeling Standard for Diagnostic Ultrasound Equipment (AIUM 1998), has been substantially changed, with the original labeling requirements being replaced by the labeling specified in the FDA’s 510(k) Guideline (FDA 1997) and, optionally, the labeling specified in IEC 1157 (IEC 1992a). As of this writing, the International Electrotechnical Commission, Technical Committee 87, is developing additional standards for ultrasonic output measurement, calibration, and labeling. Their efforts have been helpful in the development of this document. Relevant IEC standards should be consulted for further technical information as they become available.

User needs have been considered throughout the development of this publication. Proposed or recommended revisions should be submitted to:

Chairman, AIUM Technical Standards Committee
American Institute of Ultrasound in Medicine
14750 Sweitzer Lane, suite 100
Laurel MD 20707-5906

Revisions have been included which make the standard consistent with the NEMA UD-2 (as noted above) and The AIUM/NEMA Standard for Real-Time Display of Thermal and Mechanical Acoustic Output Indices on Diagnostic Ultrasound Equipment, (AIUM/NEMA, 1998).

A few improvements are reflected here which represent changes in all three of the documents. Members of the AIUM/NEMA Harmonization Task Group performing this revision were:

AIUM
Paul L. Carson, Ph.D.
John G. Abbott, Ph.D.
Gerald R. Harris, Ph.D.
Peter Lewin, Ph.D., Chairman

NEMA
Charles Hottinger, Ph.D.
Douglas Worth
Kurt Sandstrom

The amended requirements supersede those of all previous revisions of the standard.
Foreword to the Acoustic Output Measurement and Labeling Standard
for Diagnostic Ultrasound Equipment, 1993, Revision 1

In July 1993, the Acoustic Output Measurement and Labeling Standard for Diagnostic Ultrasound Equipment was amended. The primary purposes of the amendments are to (1) introduce harmonized requirements into both the AIUM publication Acoustic Output Measurement and Labeling Standard for Diagnostic Ultrasound Equipment and the National Electrical Manufacturers Association's (NEMA) Acoustic Output Measurement Standard for Diagnostic Ultrasound Equipment (UD 2), so that they are technically equivalent with regard to measurement procedures; (2) introduce those improved measurement practices developed for the Standard for Real-Time Display of Thermal and Mechanical Acoustic Output Indices on Diagnostic Ultrasound Equipment (UD 3) (Output Display Standard) into this standard, so that it represents the latest thoughts on measurement practices; and (3) expand the coverage of the standard to the extent that generic measurement procedures necessary to support the Output Display Standard are included.

The amended requirements supersede those of the original edition.

The amendments were developed by a joint AIUM/NEMA Task Group, whose members were:

Peter Lewin, Ph.D., Chairperson
Charles Grossman
Charles Hottinger, Ph.D.
Ming Li
Kurt Sandstrom
Kai Thomenius, Ph.D.

Paul L. Carson, Ph.D.
Gerald R. Harris, Ph.D.
Sejoong Kwon
William O'Brien, Jr., Ph.D.
Mark Schafer, Ph.D.
Marvin Ziskin, M.D.

The encouragement of the past chairperson of the AIUM Standards Committee, Peter Edmonds, Ph.D., is acknowledged.
Foreword to the *Acoustic Output Measurement and Labeling Standard for Diagnostic Ultrasound Equipment, 1992 Version*

This document has been prepared by a Task Force composed of members of the American Institute of Ultrasound in Medicine (AIUM) and members of the National Electronic Manufacturer’s Association (NEMA). Initially the aim of this Task Force was to revise the 1981 document entitled, *The AIUM/NEMA Safety Standard for Diagnostic Ultrasound Equipment*. However, considerable progress has occurred in this field recently necessitating major rewriting to the point where the result is a truly new document. Furthermore, the discussion of safety considerations has been deleted because this is being pursued elsewhere by AIUM and the National Council on Radiation Protection and Measurements (NCRP).

AIUM and NEMA Task Group Members

AIUM
Paul L. Carson, Ph.D.
Gerald R. Harris, Ph.D.
Frank P. Leo, B.S., A.A.S.
Wesley L. Nyborg, Ph.D.
William D. O’Brien, Jr., Ph.D., Co-Chair
Marvin C. Ziskin, M.D.

NEMA
John G. Abbott, Ph.D.
Scott Corbitt, M.S.
John Dellinger, B.S.
Charles Hottinger, Ph.D.
Thomas L. Szabo, MS, Co-Chair

Appendices A, B, C, D, E, F, G, H, I, J, and K are for informational purposes only.

In this standard, the following print types are used:

- requirements and definitions: arial type
- NOTES: in 8 arial type
- terms used in this standard as defined in Section 1: **bold arial type**
Purpose

The objective of this Standards Publication is to describe a set of measurement procedures for ultrasonic output parameters. This document implements this by setting forth precise definitions of quantities, primarily those relating to acoustic output levels, and specifying standard procedures for measuring the pertinent acoustic output parameters.

It is hoped that this standard will be found useful to individuals performing the indicated measurements.
Scope

This standard covers all active ultrasound apparatus designed for medical diagnostic use, including ultrasonic echo ranging devices (both manual and automatically scanned), through-transmission devices, Doppler echo equipment, and combinations thereof.

This document establishes measurement standards for acoustic output quantities of ultrasonic diagnostic equipment.

Measurements of acoustic output quantities are to be performed in water. However, in order to provide values more typical of what might occur within tissue, derated values of output quantities will be required in addition to the in-water values. To provide an example, detailed derating procedures and requirements are discussed in this standard for a specific model; this is a 0.3 dB/cm-MHz uniform attenuation model, and will be notationally designated by the subscript ".3," i.e., $I_{SPA,3}$.

It is anticipated that in the future, different derating factors will be necessary to better represent different applications. The standard provides for the implementation of different derating schemes by the manufacturer, provided that the implementation of that scheme is described.