NOTICE AND DISCLAIMER

The information in this publication was considered technically sound by the consensus of persons engaged in the development and approval of the document at the time it was developed. Consensus does not necessarily mean that there is unanimous agreement among every person participating in the development of this document.

American National Standards Institute, Inc. (ANSI) standards and guideline publications, of which the document contained herein is one, are developed through a voluntary consensus standards development process. This process brings together volunteers and/or seeks out the views of persons who have an interest in the topic covered by this publication. While NEMA administers the process and establishes rules to promote fairness in the development of consensus, it does not write the document and it does not independently test, evaluate, or verify the accuracy or completeness of any information or the soundness of any judgments contained in its standards and guideline publications.

NEMA disclaims liability for any personal injury, property, or other damages of any nature whatsoever, whether special, indirect, consequential, or compensatory, directly or indirectly resulting from the publication, use of, application, or reliance on this document. NEMA disclaims and makes no guaranty or warranty, expressed or implied, as to the accuracy or completeness of any information published herein, and disclaims and makes no warranty that the information in this document will fulfill any of your particular purposes or needs. NEMA does not undertake to guarantee the performance of any individual manufacturer or seller’s products or services by virtue of this standard or guide.

In publishing and making this document available, NEMA is not undertaking to render professional or other services for or on behalf of any person or entity, nor is NEMA undertaking to perform any duty owed by any person or entity to someone else. Anyone using this document should rely on his or her own independent judgment or, as appropriate, seek the advice of a competent professional in determining the exercise of reasonable care in any given circumstances. Information and other standards on the topic covered by this publication may be available from other sources, which the user may wish to consult for additional views or information not covered by this publication.

NEMA has no power, nor does it undertake to police or enforce compliance with the contents of this document. NEMA does not certify, test, or inspect products, designs, or installations for safety or health purposes. Any certification or other statement of compliance with any health- or safety-related information in this document shall not be attributable to NEMA and is solely the responsibility of the certifier or maker of the statement.

© 2015 National Electrical Manufacturers Association
Foreword

This standard was developed by the High Performance Wire and Cable section of NEMA as a non-governmental standard replacement for MIL-DTL-27500 electrical cable, which is widely used in aerospace and other industries.

It contains:

a) Reference standards (section 1)
b) Identification methods (section 2) and requirements (Section 3.10)
c) Construction details (sections 2, 3)
d) Material requirements (section 2)
e) Conductors
f) Primary wire
g) Shields
h) Jackets
i) Electrical requirements (section 3.8)
j) Physical requirements (section 3.8)
 1) Other requirements (sections 3.11-3.14)
k) Color/size/weight/lengths/markings
l) Test methods for above requirements (section 4)
m) Inspection/QC/process control procedures (section 4)
n) Packaging (section 5)
o) Notes/cross-reference/other data (section 6)
p) Ordering data
q) Qualification and retention of qualification requirements

The requirements contained herein are consensus requirements that have been developed over the past three decades by knowledgeable engineers in the aerospace industry.

Members of the NEMA High Performance Wire and Cable Section that participated in development of the current edition of this standard:

AFC Cable Systems New Bedford, MA
AmerCable El Dorado, AR
Belden Inc. St. Louis, MO
Berk-Tek, a Nexans Company Elm City, NC
Cable USA LLC. Naples, FL
Coleman Cable Inc. Waukegan, IL
General Cable Highland Heights, KY
Harbour Industries LLC. Shelburne, VT
IWG High Performance Conductors Inman, SC
Kaneka North America Pasadena, TX
Leviton Manufacturing Co., Inc. Gardena, CA
Quirk Wire Company, Inc. West Brookfield, MA
Radix Wire Company Euclid, OH
RSCC Aerospace and Defense East Granby, CT
Southwire Company Carrollton, GA
The Monroe Cable Company, Inc. Middletown, NY
The Okonite Company Ramsey, NJ
TE Connectivity Menlo Park, CA

© 2015 National Electrical Manufacturers Association
Contents

Foreword .. i

SECTION 1 GENERAL ... 1
1.1 SCOPE .. 1
1.2 REFERENCED STANDARDS .. 1
1.3 ORDER OF PRECEDENCE ... 3

SECTION 2 CLASSIFICATION .. 4
2.1 GENERAL .. 4
2.2 CABLE DESIGNATION ... 4
2.2.1 Identification Method of Cable Wire (with Shield Coverage) .. 4
2.2.2 Conductor Size ... 5
2.2.3 Basic Wire Specification ... 5
2.2.4 Number of Wires Per Cable ... 8
2.2.5 Shield Style and Material .. 8
2.2.6 Jacket Material, Color, and Temperature Rating .. 9

SECTION 3 REQUIREMENTS .. 11
3.1 CONSTRUCTION .. 11
3.2 BASIC WIRE .. 11
3.3 FINISHED CABLE .. 11
3.4 IDENTIFICATION OF CABLE WIRE ... 11
3.4.1 Preferred Identification Method ... 11
3.4.2 Optional Identification Method A ... 11
3.4.3 Optional Identification Method B ... 14
3.4.4 Optional Identification Method C ... 14
3.4.5 Optional Identification Method D ... 15
3.4.6 Optional Identification Method E ... 15
3.4.7 Optional Identification Method F ... 15

SECTION 4 CABLE LAY-UP AND DIRECTION ... 15
3.5 CABLE LAY-UP AND DIRECTION ... 15

SECTION 5 FILLERS AND BINDER TAPES ... 16
3.6 FILLERS AND BINDER TAPES ... 16

SECTION 6 SHIELD ... 16
3.7 SHIELD ... 16
3.7.1 Round Shield ... 16
3.7.2 Flat Shield ... 18
3.7.3 Braid Angle ... 18
3.7.4 Shield Coverage .. 18
3.7.5 Shield Splices .. 18

SECTION 7 JACKET .. 19
3.8 JACKET .. 19
3.8.1 Jacket Requirements .. 19
3.8.2 Jacket Material ... 19

SECTION 8 FUNCTIONAL CHARACTERISTICS ... 23
3.9 FUNCTIONAL CHARACTERISTICS ... 23
3.9.1 Dielectric Withstand .. 23
3.9.2 Jacket Flaws (Shielded-and-jacketed Cables Only) .. 23
3.9.3 Conductor Continuity .. 23
3.9.4 Cold Bend (Jacketed and Shielded-and-jacketed Cables Only) .. 23
3.9.5 Thermal Shock ... 23
3.9.6 Blocking .. 23
3.9.7 Flammability .. 24
3.9.8 Lamination Sealing .. 24
3.9.9 Crosslinked Verification ... 24
3.9.10 Shield Solderability .. 24
3.9.11 Temperature Rating .. 24
3.9.12 Component Tensile and Elongation ... 24
3.9.13 Low-fluoride Jackets ... 24

© 2015 National Electrical Manufacturers Association
APPENDIX A (INFORMATIVE) CABLE DESIGN GUIDELINES .. 43
A.1 INTRODUCTION .. 43
A.2 ELEMENTS OF PRIMARY WIRE SELECTION .. 43
 A.2.1 Conductor Size .. 43
 A.2.2 Conductor Type .. 43
 A.2.3 Insulation Type .. 43
A.3 ELEMENTS OF SHIELD SELECTION .. 43
 A.3.1 Material .. 43
 A.3.2 Flat vs Round Strands .. 43
 A.3.3 Shield Coverage ... 43
A.4 ELEMENTS OF JACKET SELECTION ... 44
A.5 CABLE IDENTIFICATION AND COLOR CODES ... 44
A.6 CONSULTATION ... 44

APPENDIX B (INFORMATIVE) SUPERSESSIONS AND REPLACEMENTS .. 45
B.1 SUPERSEDED SYMBOLS .. 45
B.2 MANNED AEROSPACE REPLACEMENTS .. 47

Tables
Table 2-1 Identification Methods Cross-reference .. 5
Table 2-2.1 Basic Wire Specification ... 5
Table 2-2.2 Basic Wire Specification ... 7
Table 2-3 Shield Material .. 9
Table 2-4 Jacket Material and Color ... 10
Table 3-1 Circuit Identification Colors for Basic Wires .. 12
Table 3-2 Circuit Identification Colors for Basic Wires .. 13
Table 3-3 Color of Insulation for Identification of Wire Sizes in Accordance with MIL-STD-686 ... 14
Table 3-4 Circumferential Band Configuration for Wire Number Identification 15
Table 3-5 Round Shield Strand Size ... 17
Table 3-6 Cable and Geometry Factors ... 17
Table 3-7 Jacket Wall Thickness .. 22
Table 3-8 Thermal Shock ... 23
Table 3-9 Cable Product Identification .. 23
Table 4-1 Quality Conformance Inspection .. 27
Table 4-2 Process Control Test ... 28
Table 4-3 NAVAIR Qualification Inspection .. 31
Table 4-4 Sample for Qualification by Construction .. 32
Table 4-5 Test Mandrel Diameters (inches) .. 37
Table 4-6 Specific Gravity for Jacketing Materials ... 40
Table B-1 Cross-reference of Canceled Wire Symbols and Specifications 45
Section 1
GENERAL

1.1 SCOPE
This standard contains requirements for finished cables. Component wires are covered by other referenced standards. These cables are intended for signal and low-voltage power applications with defined environment or temperature conditions found in commercial aircraft, military aircraft, and high-performance vehicles.

Naval Air Systems Command (NAVAIR) approval is required to manufacture these cables.

1.2 REFERENCED STANDARDS

American National Standards Institute (ANSI)
11 West 42nd Street
New York, NY 10036

American Society for Quality Control (ASQC)
611 East Wisconsin Avenue
Milwaukee, Wisconsin 53202

ANSI/ASQ Z 1.4 Sampling Procedures and Tables for Inspection by Attributes

American Society for Testing and Materials (ASTM)
100 Barr Harbor Drive
West Conshohocken, PA 19428

ASTM A 313/A313M Standard Specification for Stainless Steel Spring Wire
ASTM B 272 Copper Flat Copper Products with Finished (Rolled or Drawn) Edges (Flat Wire and Strip)
ASTM B 298 Silver-Coated Soft or Annealed Copper Wire
ASTM B 3 Soft or Annealed Copper Wire
ASTM B 33 Standard Specification for Tinned Soft or Annealed Copper Wire for Electrical Purposes
ASTM B 355 Nickel-Coated Soft or Annealed Copper Wire
ASTM B 624 Standard Specification for High-strength, High-conductivity Copper Alloy Wire for Electronic Application
ASTM B971 Standard Specification for Silver-Coated Braid and Ribbon Flat Copper Wire Intended for Use in Electronic Application
ASTM B972 Standard Specification for Nickel-Coated Braid and Ribbon Flat Copper Wire Intended for Use in Electronic Application
ASTM B973 Standard Specification for Tin-Coated Braid and Ribbon Flat Copper Wire Intended for Use in Electronic Application
ASTM D 3032 Hookup Wire Insulation, Standard Methods of Testing
ASTM D 4066 Polyamide Injection and Extrusion Materials (PA) Nylon Injection and Extrusion Materials (PA)

© 2015 National Electrical Manufacturers Association