Approved as an American National Standard
ANSI Approval Date: June 1, 2018

ANSI/NEMA Standards Publication MG 1-2016

Motors and Generators: Air-Over Motor Efficiency Test Method
Section IV Part 34

Published by

National Electrical Manufacturers Association
1300 North 17th Street, Suite 900
Rosslyn, Virginia 22209

www.nema.org

© 2016 National Electrical Manufacturers Association. All rights, including translation into other languages, reserved under the Universal Copyright Convention, the Berne Convention for the Protection of Literary and Artistic Works, and the International and Pan American copyright conventions.
NOTICE AND DISCLAIMER

The information in this publication was considered technically sound by the consensus of persons engaged in the development and approval of the document at the time it was developed. Consensus does not necessarily mean that there is unanimous agreement among every person participating in the development of this document.

ANSI standards, of which the document contained herein is one, are developed through a voluntary consensus standards development process. This process brings together volunteers and/or seeks out the views of persons who have an interest in the topic covered by this publication. As Secretary of the ANSI Accredited Standards Committee, NEMA administers the process in accordance with the procedures of the American National Standards Institute to promote fairness in the development of consensus. As a publisher of this document, NEMA does not write the document and it does not independently test, evaluate or verify the accuracy or completeness of any information or the soundness of any judgments contained in its standards and guideline publications.

NEMA disclaims liability for any personal injury, property or other damages of any nature whatsoever, whether special, indirect, consequential or compensatory, directly or indirectly resulting from the publication, use of, application, or reliance on this document. NEMA disclaims and makes no guaranty or warranty, express or implied, as to the accuracy or completeness of any information published herein, and disclaims and makes no warranty that the information in this document will fulfill any of your particular purposes or needs. NEMA does not undertake to guarantee the performance of any individual manufacturer’s or seller’s products or services by virtue of this standard or guide.

In publishing and making this document available, NEMA is not undertaking to render professional or other services for or on behalf of any person or entity. Nor is NEMA undertaking to perform any duty owed by any person or entity to someone else. Anyone using this document should rely on his or her own independent judgment or, as appropriate, seek the advice of a competent professional in determining the exercise of reasonable care in any given circumstances. Information and other standards on the topic covered by this publication may be available from other sources, which the user may wish to consult for additional views or information not covered by this publication.

NEMA has no power, nor does it undertake to police or enforce compliance with the contents of this document. NEMA does not certify, test or inspect products, designs or installations for safety or health purposes. Any certification or other statement of compliance with any health- or safety-related information in this document shall not be attributable to NEMA and is solely the responsibility of the certifier or maker of the statement.

© 2016 National Electrical Manufacturers Association
Section IV
Performance Standards Applying to All Machines
Part 34
Air-Over Motor Efficiency Test Method

34.0 Scope

An air-over (AO) motor with a totally enclosed or open enclosure is defined as an electric motor rated to operate in and be cooled by the airstream of a fan or blower that is not supplied with the motor, and whose primary purpose is providing airflow to an application, rather than the primary purpose of cooling the motor. The cooling is external and therefore removed when the motor is connected to a dynamometer. This type of motor requires a special procedure to reach an appropriate temperature. These procedures replace the temperature test portion of the applicable efficiency test method. The user is then directed to conduct the load test per the applicable efficiency test method.