NOTICE AND DISCLAIMER

The information in this publication was considered technically sound by a consensus among persons engaged in its development at the time it was approved. Consensus does not necessarily mean there was unanimous agreement among every person participating in the development process.

The National Electrical Manufacturers Association (NEMA) standards and guideline publications, of which the document herein is one, are developed through a voluntary standards development process. This process brings together volunteers and/or seeks out the views of persons who have an interest in the topic covered by this publication. Although NEMA administers the process and establishes rules to promote fairness in the development of consensus, it does not write the documents, nor does it independently test, evaluate, or verify the accuracy or completeness of any information or the soundness of any judgments contained in its standards and guideline publications.

NEMA disclaims liability for any personal injury, property, or other damages of any nature, whether special, indirect, consequential, or compensatory, directly or indirectly resulting from the publication, use of, application, or reliance on this document. NEMA disclaims and makes no guaranty or warranty, express or implied, as to the accuracy or completeness of any information published herein, and disclaims and makes no warranty that the information in this document will fulfill any particular purpose(s) or need(s). NEMA does not undertake to guarantee the performance of any individual manufacturer’s or seller’s products or services by virtue of this standard or guide.

In publishing and making this document available, NEMA is not undertaking to render professional or other services for or on behalf of any person or entity, nor is NEMA undertaking to perform any duty owed by any person or entity to someone else. Anyone using this document should rely on his or her own independent judgment or, as appropriate, seek the advice of a competent professional in determining the exercise of reasonable care in any given circumstance. Information and other standards on the topic covered by this publication may be available from other sources, which the user may wish to consult for additional views or information not covered by this publication.

NEMA has no power, nor does it undertake to police or enforce compliance with the contents of this document. NEMA does not certify, test, or inspect products, designs, or installations for safety or health purposes. Any certification or other statement of compliance with any health- or safety-related information in this document shall not be attributable to NEMA and is solely the responsibility of the certifier or maker of the statement.
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>PURPOSE</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>SCOPE</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>DEFINITIONS</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>CLASSIFICATION OF DEGREES OF PROTECTION PROVIDED FOR ENCLOSURES FOR ROTATING MOTORS</td>
<td>4</td>
</tr>
<tr>
<td>4.1</td>
<td>Single Characteristic Numeral</td>
<td>4</td>
</tr>
<tr>
<td>4.2</td>
<td>Supplementary Letters</td>
<td>4</td>
</tr>
<tr>
<td>4.3</td>
<td>Letters Following Numerals</td>
<td>4</td>
</tr>
<tr>
<td>4.4</td>
<td>Letters Placed Immediately After the Letters IP</td>
<td>4</td>
</tr>
<tr>
<td>4.5</td>
<td>Degrees of Protection—First Characteristic Numeral</td>
<td>4</td>
</tr>
<tr>
<td>4.6</td>
<td>Degrees of Protection—Second Characteristic Numeral</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>METHODS OF COOLING</td>
<td>5</td>
</tr>
<tr>
<td>5.1</td>
<td>Arrangement of the IC Code</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>MECHANICAL VIBRATION—MEASUREMENT, EVALUATION, AND LIMITS OF AC MEDIUM MOTORS</td>
<td>5</td>
</tr>
<tr>
<td>7</td>
<td>SMALL (FRACTIONAL) AND MEDIUM (INTEGRAL) MOTORS RATINGS</td>
<td>5</td>
</tr>
<tr>
<td>7.1</td>
<td>Voltages</td>
<td>5</td>
</tr>
<tr>
<td>7.2</td>
<td>Frequencies</td>
<td>6</td>
</tr>
<tr>
<td>7.3</td>
<td>Horsepower and Speed Ratings</td>
<td>6</td>
</tr>
<tr>
<td>7.3.1</td>
<td>Small Induction Motors</td>
<td>6</td>
</tr>
<tr>
<td>7.3.2</td>
<td>Single-Phase Medium Motors</td>
<td>6</td>
</tr>
<tr>
<td>7.3.3</td>
<td>Polyphase Medium Induction Motors</td>
<td>6</td>
</tr>
<tr>
<td>7.3.4</td>
<td>Basis of Single-Phase Horsepower Rating</td>
<td>6</td>
</tr>
<tr>
<td>7.4</td>
<td>Horsepower Ratings of Multispeed Motors</td>
<td>6</td>
</tr>
<tr>
<td>7.4.1</td>
<td>Constant Horsepower</td>
<td>6</td>
</tr>
<tr>
<td>7.4.2</td>
<td>Constant Torque</td>
<td>6</td>
</tr>
<tr>
<td>7.4.3</td>
<td>Variable Torque</td>
<td>6</td>
</tr>
<tr>
<td>7.5</td>
<td>Rating of 60-Hertz Motors Operated on 50-Hertz Power</td>
<td>6</td>
</tr>
<tr>
<td>7.6</td>
<td>Time Ratings for Single-Phase and Polyphase Induction Motors</td>
<td>6</td>
</tr>
<tr>
<td>7.7</td>
<td>Code Letters (for Locked-Rotor kVA)—Nameplate Marking</td>
<td>7</td>
</tr>
<tr>
<td>7.8</td>
<td>Nameplate Temperature Ratings for Alternating-Current Small Motors</td>
<td>7</td>
</tr>
<tr>
<td>7.9</td>
<td>Nameplate Marking for Small Single-Phase and Polyphase Motors</td>
<td>7</td>
</tr>
<tr>
<td>7.9.1</td>
<td>Dual Voltage, Dual Frequency, and Dual Speed Motors</td>
<td>7</td>
</tr>
<tr>
<td>7.10</td>
<td>Nameplate Marking for Medium Single-Phase and Polyphase Induction Motors</td>
<td>8</td>
</tr>
<tr>
<td>7.11</td>
<td>Additional Nameplate Information for All Motors</td>
<td>8</td>
</tr>
<tr>
<td>8</td>
<td>DIMENSIONS—AC SMALL (FRACTIONAL) AND MEDIUM (INTEGRAL) MOTORS</td>
<td>9</td>
</tr>
<tr>
<td>8.1</td>
<td>System for Designating Frames</td>
<td>9</td>
</tr>
<tr>
<td>8.1.1</td>
<td>Small Motors</td>
<td>9</td>
</tr>
<tr>
<td>8.1.2</td>
<td>Medium Motors</td>
<td>9</td>
</tr>
<tr>
<td>8.2</td>
<td>Frame Assignments</td>
<td>10</td>
</tr>
<tr>
<td>8.3</td>
<td>Lettering of Dimension Sheets</td>
<td>10</td>
</tr>
<tr>
<td>8.4</td>
<td>Tolerances for Shaft Runout</td>
<td>10</td>
</tr>
</tbody>
</table>
9 TESTS AND PERFORMANCE—AC SMALL AND MEDIUM MOTORS

9.1 Routine Tests for Polyphase Medium Induction Motors ... 10
9.2 High-Potential Test Voltages for Induction Motors [MG 1-12.3] ... 10
9.3 Test Methods .. 11
9.4 Performance Characteristics ... 11
9.5 Torque Characteristics of Single-Phase General-Purpose Induction Motors .. 11
 9.5.1 Breakdown Torque of Single-Phase Motors .. 11
 9.5.2 Locked-Rotor Torque of Single-Phase Small Motors .. 11
 9.5.3 Locked-Rotor Torque of Single-Phase Medium Motors ... 11
 9.5.4 Pull-Up Torque of Single-Phase Medium Motors ... 11
9.6 Locked-Rotor Current Characteristics of Single-Phase and Polyphase General-Purpose Induction Motors ... 11
 9.6.1 Locked-Rotor Current of Single-Phase Small Motors, Designs N, O, and General Purpose 11
 9.6.2 Locked-Rotor Current of Single-Phase Medium Motors, Designs L and M 11
 9.6.3 Locked-Rotor Current of 3-Phase 60-Hertz Small and Medium Squirrel-Cage Induction Motors Rated at 230 Volts ... 12
9.7 Torque Characteristics of Polyphase General-Purpose Induction Motors ... 12
 9.7.1 Breakdown Torque Characteristics of Polyphase Small Motors .. 12
 9.7.2 Locked-Rotor Torque of Single-Speed Polyphase Squirrel-Cage Medium Motors with Continuous Rating .. 12
 9.7.3 Breakdown Torque of Single-Speed Polyphase Squirrel-Cage Medium Motors with Continuous Ratings .. 12
 9.7.4 Pull-Up Torque of Single-Speed Polyphase Squirrel-Cage Medium Motors with Continuous Ratings .. 12
9.8 Temperature Rise for Small and Medium Single-Phase and Polyphase Induction Motors 12
9.9 Variations from Rated Voltage and Rated Frequency ... 13
 9.9.1 Running .. 13
 9.9.2 Starting ... 13
9.10 Voltage Unbalance ... 13
9.11 Variation from Rated Speed .. 13
9.12 Variation from Nameplate Amperes—Alternating-Current Medium Motors 13
9.13 Occasional Excess Current .. 13
9.14 Stall Time .. 14
9.15 Service Factor of Alternating-Current Motors .. 14
 9.15.1 General-Purpose Alternating-Current Motors of the Open Type ... 14
9.16 Overspeeds for Squirrel-Cage Motors .. 14
 9.16.1 General Purpose Squirrel-Cage Induction Motors ... 14
 9.16.2 General-Purpose Design A and B Direct-Coupled Squirrel-Cage Induction Motors 14
9.17 Machine Sound (Medium Induction Motors) .. 15
 9.17.1 General ... 15
 9.17.2 Sound Measurement ... 15
 9.17.3 Sound Power Levels of Polyphase Squirrel-Cage Induction Motors at No Load 15
 9.17.4 Sound Power Levels of Polyphase Squirrel-Cage Induction Motors at Rated Load 15
9.18 Number of Starts .. 15
9.19 Thermal Protection of Medium Motors .. 16
9.19.1 Winding Temperature .. 16
9.20 Overtemperature Protection of Medium Motors Not Meeting the Definition of “Thermally Protected” .. 16
 9.20.1 Type 1—Winding Running and Locked Rotor Overtemperature Protection 16
 9.20.2 Type 2—Winding Running Overtemperature Protection 17
 9.20.3 Type 3—Winding Overtemperature Protection, Nonspecific Type 17
9.21 Efficiency ... 17
 9.21.1 Determination of Motor Efficiency and Losses 17
 9.21.2 Efficiency of Polyphase Squirrel-Cage Medium Motors with Continuous Ratings 18
 9.21.3 Efficiency Levels of Energy Efficient Polyphase Squirrel-Cage Induction Motors 18
 9.21.4 Efficiency Levels of Premium Efficiency Electric Motors 18
 9.21.5 Effects of Load on Motor Efficiency 18

10 APPLICATION DATA—AC SMALL AND MEDIUM MOTORS .. 19
10.1 Service Conditions .. 19

11 APPLICATION CONSIDERATIONS FOR CONSTANT SPEED DESIGN A AND B INDUCTION MOTORS USED ON A SINUSOIDAL BUS WITH HARMONIC CONTENT .. 19
 11.1 Efficiency ... 19
 11.2 Derating for Harmonic Content ... 19
 11.2.1 Harmonic Voltage Factor (HVF) Defined 19
 11.3 Power Factor Correction .. 20

12 APPLICATION CONSIDERATIONS FOR GENERAL PURPOSE DESIGN a AND b INDUCTION MOTORS USED WITH ADJUSTABLE-VOLTAGE OR ADJUSTABLE-FREQUENCY CONTROLS OR BOTH .. 20
 12.1 Torque ... 20
 12.1.1 Motor Torque During Operation Below Base Speed 20
 12.1.2 Torque Derating at Reduced Speeds 20
 12.1.3 Motor Torque During Operation Above Base Speed 20
 12.2 Current .. 21
 12.2.1 Running Current ... 21
 12.2.2 Starting Current .. 21
 12.3 Efficiency .. 21
 12.4 Maximum Safe Operating Speeds ... 21
 12.5 Sound .. 21
 12.6 Resonances, Sound, Vibration ... 22
 12.7 Voltage Stress ... 22
 12.8 Power Factor Correction ... 22
 12.9 Operation in Hazardous (Classified) Locations 22
Foreword

In the preparation of this publication, input of users and other interested parties has been sought and evaluated. Inquiries, comments, and proposed or recommended revisions should be submitted to the concerned NEMA product Subdivision by contacting the:

Senior Technical Director, Operations
National Electrical Manufacturers Association
1300 North 17th Street, Suite 900
Rosslyn, VA 22209

This publication was developed by the Motors and Generators Section. Section approval of the document does not necessarily imply that all section members voted for its approval or participated in its development. At the time it was approved, the section was composed of the following members:

A.O. Smith Electrical Products Company—Tipp City, OH
Baldor Electric Company—Fort Smith, AR
Brook Crompton North America—Toronto, Canada
Cummins, Incorporated—Minneapolis, MN
Emerson Electric Company—St. Louis, MO
GE Industrial Systems—Fort Wayne, IN
Howell Electric Motors—Plainfield, NJ
Peerless-Winsmith, Incorporated—Warren, OH
RAM Industries—Leesport, PA
Regal-Beloit Corporation—Beloit, WI
 Leeson Electric—Grafton, WI
 Lincoln Electric—Cleveland, OH
 Marathon Electric—Wausau, WI
SEW-Eurodrive, Incorporated—Lyman, SC
Siemens Energy & Automation, Incorporated—Norwood, OH
Sterling Electric, Incorporated—Irvine, CA
TECO-Westinghouse Motor Company—Round Rock, TX
The Imperial Electric Company—Akron, OH
Toshiba International Corporation—Houston, TX
WEG Electric Motor Corporation—Suwanee, GA
1 PURPOSE
This is a condensation of the standards on motors included in NEMA Motors and Generators, MG 1-2011. Some standards are reprinted in their entirety while others have been combined or abbreviated. The numbers placed at the end of many of the paragraphs in this condensation (e.g. MG 1 Part 6) refer to the complete standard in MG 1.

2 SCOPE
The standards in this guide cover alternating-current squirrel-cage motors up to and including the ratings built in frames corresponding to the continuous open-type ratings given in Table 1.