NEMA Standards Publication ICS 61800-1-2002 (R 2007)

Adjustable Speed Electrical Power Drive Systems

Part 1: General Requirements — Rating Specifications for Low Voltage Adjustable Speed d.c. Power Drive Systems

Published by

National Electrical Manufacturers Association
1300 North 17th Street, Suite 1752
Rosslyn, Virginia 22209

www.nema.org

© Copyright 2002 by the National Electrical Manufacturers Association. All rights including translation into other languages, reserved under the Universal Copyright Convention, the Berne Convention for the Protection of Literary and Artistic Works, and the International and Pan American Copyright Conventions.
NOTICE AND DISCLAIMER

The information in this publication was considered technically sound by the consensus of persons engaged in the development and approval of the document at the time it was developed. Consensus does not necessarily mean that there is unanimous agreement among every person participating in the development of this document.

The National Electrical Manufacturers Association (NEMA) standards and guideline publications, of which the document contained herein is one, are developed through a voluntary consensus standards development process. This process brings together volunteers and/or seeks out the views of persons who have an interest in the topic covered by this publication. While NEMA administers the process and establishes rules to promote fairness in the development of consensus, it does not write the document and it does not independently test, evaluate, or verify the accuracy or completeness of any information or the soundness of any judgments contained in its standards and guideline publications.

NEMA disclaims liability for any personal injury, property, or other damages of any nature whatsoever, whether special, indirect, consequential, or compensatory, directly or indirectly resulting from the publication, use of, application, or reliance on this document. NEMA disclaims and makes no guaranty or warranty, expressed or implied, as to the accuracy or completeness of any information published herein, and disclaims and makes no warranty that the information in this document will fulfill any of your particular purposes or needs. NEMA does not undertake to guarantee the performance of any individual manufacturer or seller’s products or services by virtue of this standard or guide.

In publishing and making this document available, NEMA is not undertaking to render professional or other services for or on behalf of any person or entity, nor is NEMA undertaking to perform any duty owed by any person or entity to someone else. Anyone using this document should rely on his or her own independent judgment or, as appropriate, seek the advice of a competent professional in determining the exercise of reasonable care in any given circumstances. Information and other standards on the topic covered by this publication may be available from other sources, which the user may wish to consult for additional views or information not covered by this publication.

NEMA has no power, nor does it undertake to police or enforce compliance with the contents of this document. NEMA does not certify, test, or inspect products, designs, or installations for safety or health purposes. Any certification or other statement of compliance with any health or safety–related information in this document shall not be attributable to NEMA and is solely the responsibility of the certifier or maker of the statement.
CONTENTS

<table>
<thead>
<tr>
<th>Clause</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Foreword</td>
<td>v</td>
</tr>
</tbody>
</table>

GENERAL

<table>
<thead>
<tr>
<th>Clause</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1 Scope and Object</td>
<td>1</td>
</tr>
<tr>
<td>1.2 Normative References</td>
<td>1</td>
</tr>
<tr>
<td>1.3 Symbols</td>
<td>3</td>
</tr>
</tbody>
</table>

DEFINITIONS

<table>
<thead>
<tr>
<th>Clause</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1 System</td>
<td>9</td>
</tr>
<tr>
<td>2.1.1 d.c. Power Drive System (PDS)</td>
<td>9</td>
</tr>
<tr>
<td>2.1.2 d.c. Power Drive System-Hardware Configuration</td>
<td>9</td>
</tr>
<tr>
<td>2.2 Converters</td>
<td>11</td>
</tr>
<tr>
<td>2.2.1 Converter, General Purpose</td>
<td>11</td>
</tr>
<tr>
<td>2.2.2 Rectifying - Rectification</td>
<td>11</td>
</tr>
<tr>
<td>2.2.3 Inverting - Inversion</td>
<td>12</td>
</tr>
<tr>
<td>2.2.4 Converter, d.c. Linked</td>
<td>12</td>
</tr>
<tr>
<td>2.2.5 Converter, Line-Side Commutated</td>
<td>12</td>
</tr>
<tr>
<td>2.2.6 Chopper</td>
<td>12</td>
</tr>
<tr>
<td>2.2.7 Converter, Voltage Source</td>
<td>12</td>
</tr>
<tr>
<td>2.3 Drive System Operating Characteristics</td>
<td>12</td>
</tr>
<tr>
<td>2.3.1 Two Quadrant Operation</td>
<td>12</td>
</tr>
<tr>
<td>2.3.2 Four Quadrant Operation</td>
<td>12</td>
</tr>
<tr>
<td>2.3.3 Dynamic Braking</td>
<td>12</td>
</tr>
<tr>
<td>2.3.4 Regeneration</td>
<td>12</td>
</tr>
<tr>
<td>2.4 CDM, BDM and Converter Input Parameters</td>
<td>14</td>
</tr>
<tr>
<td>2.4.1 Rated System Voltage U_{LN}</td>
<td>14</td>
</tr>
<tr>
<td>2.4.2 Rated System Frequency f_{IN}</td>
<td>14</td>
</tr>
<tr>
<td>2.4.3 Line-Side Rated a.c. Voltage U_{VN}</td>
<td>14</td>
</tr>
<tr>
<td>2.4.5 Rated Input Current I_{VN}</td>
<td>14</td>
</tr>
<tr>
<td>2.4.6 Line-Side Harmonic Content</td>
<td>14</td>
</tr>
<tr>
<td>2.4.7 Characteristic Current Harmonics</td>
<td>14</td>
</tr>
<tr>
<td>2.4.8 Harmonic Distortion</td>
<td>14</td>
</tr>
<tr>
<td>2.4.9 Converter Input Displacement Factor $\cos \varphi_{V1}$</td>
<td>16</td>
</tr>
<tr>
<td>2.4.10 Line-Side Displacement Factor $\cos \varphi_{L1}$</td>
<td>16</td>
</tr>
<tr>
<td>2.4.11 Input Total Power Factor, λ_{L}</td>
<td>16</td>
</tr>
<tr>
<td>2.4.12 Maximum a.c. System, Symmetrical Short-Circuit Current I_{SCM}</td>
<td>16</td>
</tr>
<tr>
<td>2.5 CDM, BDM and Converter Output Parameters</td>
<td>16</td>
</tr>
<tr>
<td>2.5.1 d.c. current I_{d}</td>
<td>16</td>
</tr>
<tr>
<td>2.5.2 Rated Continuous Output Current I_{dn}</td>
<td>17</td>
</tr>
</tbody>
</table>
2.5.3 Overload Capability I_{dM} ... 17
2.5.4 Continuous Output Rating P_{dN} ... 17
2.5.5 Rated Output Voltage U_{dN} .. 17
2.5.6 Ripple U_{pp}, I_{pp} .. 17
2.5.7 Load-Side Harmonic Content .. 17
2.5.8 Efficiency of Power Conversion η_D, η_C 17
2.5.9 Maximum Field Supply current I_{FM} .. 17
2.5.10 Rated Field Supply Voltage U_{FN} .. 18
2.6 Converter Circuitry and Circuit Elements ... 18
 2.6.1 Commutating Capacitor ... 18
 2.6.2 Commutating Inductor ... 18
 2.6.3 a.c. Filter Network .. 18
 2.6.4 Power Factor Correction Network .. 18
 2.6.5 d.c. Filter Capacitor ... 18
2.7 Motors ... 18
 2.7.1 d.c. Motors Types ... 18
 2.7.2 Rated Hot Field Voltage ... 18
 2.7.3 Base Speed N_0 .. 18
 2.7.4 Maximum Safe Motor Speed ... 18
 2.7.5 Torque Pulsation .. 18
2.8 Control Systems .. 18
 2.8.1 Controlled Variable ... 18
 2.8.2 Service Variable ... 19
 2.8.3 Operating Variable ... 19
 2.8.4 Feedback Control System Variables ... 19
3 FUNCTIONAL FEATURES
 3.1 Operational .. 21
 3.2 Fault Supervision ... 21
 3.3 Minimum Status Indication Required ... 21
 3.4 I/O Devices .. 21
4 SERVICE CONDITIONS
 4.1 Installation and Operation ... 23
 4.1.1 Electrical Service Conditions ... 23
 4.1.2 Environmental Service Conditions ... 26
 4.1.3 Unusual Environmental Service Conditions 27
 4.1.4 Installation, Commissioning and Operation 27
 4.2 Storage of Equipment .. 27
 4.2.1 Climatic Conditions .. 27
 4.2.2 Specific Storage Hazards ... 28
 4.3 Transportation ... 28
 4.3.1 Climatic Conditions ... 28
 4.3.2 Unusual Climatic Conditions ... 28
 4.3.3 Mechanical Conditions ... 28

© Copyright 2002 by the National Electrical Manufacturers Association.
5 RATINGs

5.1 BDM Input Ratings .. 31
 5.1.1 Input Voltages .. 31
 5.1.2 Input Currents ... 31
5.2 BDM Output Ratings ... 31
 5.2.1 Continuous Output Ratings .. 31
 5.2.2 Overload Capability ... 31
 5.2.3 Speed Range ... 32
 5.2.4 Existing d.c. Voltage Ratings ... 32
5.3 Efficiency and Losses .. 33
5.4 Ripple .. 33
5.5 Transformers and Reactors .. 34

6 PERFORMANCE REQUIREMENTS

6.1 Steady-state Performance .. 35
 6.1.1 Deviation Band ... 35
 6.1.2 Selection of Deviation Bands (Steady-State) .. 35
 6.1.3 Service Deviation Band-Limits .. 36
 6.1.4 Operating Deviation Band-Limits ... 36
 6.1.5 Resolution .. 37
6.2 Dynamic Performance .. 37
6.3 Dynamic Braking and Dynamic Slowdown .. 37
 6.3.1 Dynamic Braking .. 37
 6.3.2 Dynamic Slowdown .. 37
6.4 Other Performance Requirements .. 38
 6.4.1 Use of the Drive in the Application ... 38
 6.4.2 Use of the Drive in its Connection to Supply ... 38
 6.4.3 Ratings .. 38
 6.4.4 Protective Devices .. 38

7 TESTS

7.1 Classification of Tests ... 39
 7.1.1 Type Test ... 39
 7.1.2 Routine Test ... 39
 7.1.3 Sampling Test ... 39
 7.1.4 Special Test .. 39
 7.1.5 Workshop Test .. 39
 7.1.6 Acceptance Test .. 39
 7.1.7 Commissioning Test ... 39
 7.1.8 Witness Test .. 39

© Copyright 2002 by the National Electrical Manufacturers Association.
7.2 Performance of Tests .. 39
 7.2.1 General Conditions ... 39
 7.2.2 Earthing Conditions .. 39
7.3 Items of Separate Device Tests .. 40
 7.3.1 Standard Tests for PDS ... 40
 7.3.2 Standard Tests for CDM/BDM ... 41
 7.3.3 Checking the Properties of the Control Equipment of CDM/BDM 41
7.4 Items of Power Drive System Tests .. 42
 7.4.1 Test Set-Up ... 42
 7.4.2 Definitions of Rating Tests ... 43
 7.4.3 Definitions of Dynamic Tests .. 48

8 PRODUCT INFORMATION
 8.1 Marking ... 51
 8.2 Information to be Supplied With the PDS or CDM/BDM ... 51
 8.2.1 Information to be Supplied With the Furnished Equipment 51
 8.2.2 Information to be Supplied or Made Available .. 51
 8.2.3 Speed Information to Be Supplied With the Power Drive System 52

9 SAFETY AND WARNING LABELS
 9.1 Warning Labels .. 53
 9.2 Safety and Nature of a PDS ... 53

Annexes
 Annex A MOTOR CONSIDERATIONS .. 55
 Annex B LINE-SIDE CONSIDERATIONS ... 61
 Annex C AUXILIARY EQUIPMENT .. 77
 Annex D CONTROL STRATEGIES ... 81
 Annex E PROTECTION .. 97
 Annex F TOPOLOGIES .. 101
 Annex G MONITORING FEATURES .. 107

© Copyright 2002 by the National Electrical Manufacturers Association.
Foreword

1) This document is an adaptation of the IEC Standard 61800-1 with the addition of requirements pertinent to use of these devices in the US.

The IEC (International Electrotechnical Commission) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of the IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, the IEC publishes International Standards. Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. The IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.

2) The formal decisions or agreements of the IEC on technical matters, express as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested National Committees.

3) The documents produced have the form of recommendations for international use and are published in the form of standards, technical reports or guides and they are accepted by the National Committees in that sense.

4) In order to promote international unification, IEC National Committees undertake to apply IEC International Standards transparently to the maximum extent possible in their national and regional standards. Any divergence between the IEC Standard and the corresponding national or regional standard shall be clearly indicated in the latter.

5) The IEC provides no marking procedure to indicate its approval and cannot be rendered responsible for any equipment declared to be in conformity with one of its standards.

6) Attention is drawn to the possibility that some of the elements of this International Standard may be the subject of patent rights. IEC shall not be held responsible for identifying any or all such patent rights.

NEMA Standards Publications are subject to periodic review. They are revised frequently to reflect user input and to meet changing conditions and technical progress. Proposed revisions to this Standards Publication should be submitted to:

Vice President, Engineering Department
National Electrical Manufacturers Association
1300 North 17th Street, Suite 1752
Rosslyn, Virginia 22209

International Standard IEC 61800-1 was prepared by IEC technical sub-committee 22G: Semiconductor power converters for adjustable speed electric drive systems, of IEC technical committee 22: Power electronics.

Annexes A, B, C, D, E, F, and G are for information only.

© Copyright 2002 by the National Electrical Manufacturers Association.
ADJUSTABLE SPEED ELECTRICAL POWER DRIVE SYSTEMS

1 GENERAL

1.1 SCOPE AND OBJECT

This part of IEC 61800 applies to general purpose adjustable speed d.c. drive systems which include the power conversion, control equipment, and also a motor or motors. Excluded are traction and electrical vehicle drives.

It applies to systems connected to line voltages up to 1 kV a.c., 50 Hz or 60 Hz.

NOTE – In the United States, the line voltage is not more than 600 V a.c.

EMC aspects are covered in IEC 61800-3.

U.S. NOTE - EMC Immunity and Emission requirements of IEC 61800-3 are not applicable within the US.

This part of IEC 61800 gives the characteristics of the converters and their relationship with the complete d.c. drive system. It also states their performance requirements with respect to ratings, normal operating conditions, overload conditions, surge withstand capabilities, stability, protection, a.c. line earthing, and testing. Furthermore, it deals with application guidelines, such as control strategies, diagnostics, and topologies.

1.2 NORMATIVE REFERENCES

NEMA ICS 1-1993 Industrial Control and Systems General Requirements
NEMA ICS 1.3-1986 (R1991) Preventive Maintenance of Industrial Control and Systems Equipment
NEMA ICS 6-1993 Industrial Control and Systems Enclosures
NEMA MG 1-1999 Motors and Generators
NEMA 250-1997 Enclosures for Electrical Equipment (1000 Volts Maximum)
ANSI/IEEE 597-1983 Practice and Requirements for General Purpose Thyristor DC Drives
ANSI/NFPA 70-1999 National Electrical Code
UL 508C Standard for Power Conversion Equipment

The following normative documents contain provisions which, through reference in this text, constitute provisions of this part of IEC 61800. At the time of publication, the editions indicated were valid. All normative documents are subject to revision, and parties to agreements based on this part of IEC 61800 are encouraged to investigate the possibility of applying the most recent editions of the normative