NEMA Standards Publication IA 2.2-2005

(Adoption of IEC Publication 61131-2)

Programmable Controllers—
Part 2: Equipment Requirements and Tests

Published by:
National Electrical Manufacturers Association
1300 North 17th Street, Suite 1752
Rosslyn, Virginia 22209
www.nema.org

© Copyright 2005 by the National Electrical Manufacturers Association. All rights including translation into other languages, reserved under the Universal Copyright Convention, the Berne Convention for the Protection of Literary and Artistic Works, and the International and Pan American Copyright Conventions.
NOTICE AND DISCLAIMER

The information in this publication was considered technically sound by the consensus of persons engaged in the development and approval of the document at the time it was developed. Consensus does not necessarily mean that there is unanimous agreement among every person participating in the development of this document.

The National Electrical Manufacturers Association (NEMA) standards and guideline publications, of which the document contained herein is one, are developed through a voluntary consensus standards development process. This process brings together volunteers and/or seeks out the views of persons who have an interest in the topic covered by this publication. While NEMA administers the process and establishes rules to promote fairness in the development of consensus, it does not write the document and it does not independently test, evaluate, or verify the accuracy or completeness of any information or the soundness of any judgments contained in its standards and guideline publications.

NEMA disclaims liability for any personal injury, property, or other damages of any nature whatsoever, whether special, indirect, consequential, or compensatory, directly or indirectly resulting from the publication, use of, application, or reliance on this document. NEMA disclaims and makes no guaranty or warranty, express or implied, as to the accuracy or completeness of any information published herein, and disclaims and makes no warranty that the information in this document will fulfill any of your particular purposes or needs. NEMA does not undertake to guarantee the performance of any individual manufacturer or seller’s products or services by virtue of this standard or guide.

In publishing and making this document available, NEMA is not undertaking to render professional or other services for or on behalf of any person or entity, nor is NEMA undertaking to perform any duty owed by any person or entity to someone else. Anyone using this document should rely on his or her own independent judgment or, as appropriate, seek the advice of a competent professional in determining the exercise of reasonable care in any given circumstances. Information and other standards on the topic covered by this publication may be available from other sources, which the user may wish to consult for additional views or information not covered by this publication.

NEMA has no power, nor does it undertake to police or enforce compliance with the contents of this document. NEMA does not certify, test, or inspect products, designs, or installations for safety or health purposes. Any certification or other statement of compliance with any health or safety–related information in this document shall not be attributable to NEMA and is solely the responsibility of the certifier or maker of the statement.
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Foreword</td>
<td>ii</td>
</tr>
<tr>
<td>Referenced Standards</td>
<td>iv</td>
</tr>
<tr>
<td>Amendments</td>
<td>v</td>
</tr>
<tr>
<td>IEC 61131-2</td>
<td>1</td>
</tr>
</tbody>
</table>
Foreword

This Standards Publication is a NEMA Adoptive Standard based on Part 2 of IEC 61131, *Programmable Controllers*.

This Standards Publication was prepared by a technical committee of the NEMA Automation Products and Systems Section. It was approved in accordance with the bylaws of NEMA and supersedes NEMA Standards Publication ICS 3-1988, Part 3-304.

This Standards Publication provides practical information concerning ratings, construction, test, performance, and manufacture of industrial control equipment. These standards are used by the electrical industry to provide guidelines for the manufacture and proper application of reliable products and equipment and to promote the benefits of repetitive manufacturing and widespread product availability.

NEMA Standards represent the result of many years of research, investigation, and experience by the members of NEMA, its predecessors, its Sections and Committees. They have been developed through continuing consultation among manufacturers, users, and national engineering societies and have resulted in improved serviceability of electrical products with economies to manufacturers and users.

One of the primary purposes of this Standards Publication is to encourage the production of reliable control equipment which, in itself, functions in accordance with these accepted standards. Some portions of these standards, such as electrical spacings and interrupting ratings, have a direct bearing on safety; almost all of the items in this publication, when applied properly, contribute to safety in one way or another.

Properly constructed industrial control equipment is, however, only one factor in minimizing the hazards which may be associated with the use of electricity. The reduction of hazard involves the joint efforts of the various equipment manufacturers, the system designer, the installer, and the user. Information is provided herein to assist users and others in the proper selection of control equipment.

The industrial control manufacturer has limited or no control over the following factors which are vital to safe installation:

- environmental conditions
- system design
- equipment selection and application
- installation
- operating practices
- maintenance

This publication is not intended to instruct the user of control equipment with regard to these factors except insofar as suitable equipment to meet needs can be recognized in this publication and some application guidance is given.

This Standards Publication is necessarily confined to defining the construction requirements for industrial control equipment and to providing recommendations for proper selection for use under normal or certain specific conditions. Since any piece of industrial control equipment can be installed, operated, and maintained in such a manner that hazardous conditions may result, conformance with this publication does not by itself assure a safe installation. When, however, equipment conforming with these standards is properly selected and is installed in accordance with the National Electrical Code and properly maintained, the hazards to persons and property will be reduced.
To continue to serve the best interests of users, NEMA is actively cooperating with other standardization organizations in the development of simple and more universal metrology practices. In this Standards Publication, the U.S. customary units are gradually being supplemented by those of the modernized metric system known as the International Systems of Units (SI). This transition involves no changes in standard dimensions, tolerances, or performance specifications.

NEMA Standards Publications are subject to periodic review. They are revised frequently to reflect user input and to meet changing conditions and technical progress. Users should secure the latest editions.

Inquiries, comments, and proposed or recommended revisions should be submitted to the concerned NEMA product subdivision by contacting the:

Vice President, Technical Services
National Electrical Manufacturers Association
1300 North 17th Street
Rosslyn, Virginia 22209
Referenced Standards

The following standards contain provisions which, through reference in this text, constitute provisions of this NEMA Standards Publication. At the time of publication, the editions indicated were valid. All standards are subject to revision, and parties to agreements based on this Standard are encouraged to investigate the possibility of applying the most recent editions of the standards indicated below.

International Electrotechnical Commission

1, rue de Varembé
Geneva, Switzerland

IEC 61131-2
Programmable Controllers—Part 2: Equipment Requirements and Tests

National Fire Protection Association

Publication Sales Department
BatteryMarch Park
Quincy, MA 02269

ANSI/NFPA 70
National Electrical Code

© Copyright 2005 by the National Electrical Manufacturers Association.
Amendments

IEC 61131-2, *Programmable Controllers—Part 2: Equipment Requirements and Tests*, is adopted with the amendments noted below:

Subclause 1.4.28: Explanation

Devices or circuits which are isolated as defined in subclause 1.4.28 may, but need not, be isolated as defined in ANSI/NFPA 70, *National Electrical Code*.

Authorized Engineering Information

Subclause 4.2: Explanation

The equipment classes defined in subclause 4.2 are not related to the circuit classes defined in Paragraph 725 of ANSI/NFPA 70, *National Electrical Code*.

Authorized Engineering Information

Where a conflict exists between the provisions of IA 2.2 and other NEMA Standards Publications, the provisions of IA 2.2 shall govern in the area of programmable controllers and their associated peripherals.

NEMA Standard

Where a conflict exists between the provisions of IA 2.2 and ANSI/NFPA 70, *National Electrical Code*, the provisions of ANSI/NFPA 70 shall govern.

NEMA Standard
Programmable controllers –
Part 2: Equipment requirements and tests

Automates programmables –
Partie 2: Spécifications et essais des équipements
Publication numbering

As from 1 January 1997 all IEC publications are issued with a designation in the 60000 series. For example, IEC 34-1 is now referred to as IEC 60034-1.

Consolidated editions

The IEC is now publishing consolidated versions of its publications. For example, edition numbers 1.0, 1.1 and 1.2 refer, respectively, to the base publication, the base publication incorporating amendment 1 and the base publication incorporating amendments 1 and 2.

Further information on IEC publications

The technical content of IEC publications is kept under constant review by the IEC, thus ensuring that the content reflects current technology. Information relating to this publication, including its validity, is available in the IEC Catalogue of publications (see below) in addition to new editions, amendments and corrigenda. Information on the subjects under consideration and work in progress undertaken by the technical committee which has prepared this publication, as well as the list of publications issued, is also available from the following:

- IEC Web Site (www.iec.ch)
- Catalogue of IEC publications
 The on-line catalogue on the IEC web site (http://www.iec.ch/searchpub/cnr_fut.htm) enables you to search by a variety of criteria including text searches, technical committees and date of publication. On-line information is also available on recently issued publications, withdrawn and replaced publications, as well as corrigenda.
- IEC Just Published
 This summary of recently issued publications (http://www.iec.ch/online_news/justpub/ip_entry.htm) is also available by email. Please contact the Customer Service Centre (see below) for further information.
- Customer Service Centre
 If you have any questions regarding this publication or need further assistance, please contact the Customer Service Centre:

 Email: custserv@iec.ch
 Tel: +41 22 919 02 11
 Fax: +41 22 919 03 00
Programmable controllers –

Part 2: Equipment requirements and tests

Automates programmables –

Partie 2: Spécifications et essais des équipements
CONTENTS

FOREWORD ... 7
INTRODUCTION ... 9
1 General .. 10
1.1 Scope and object .. 10
1.2 Compliance with this standard ... 11
1.3 Normative references ... 11
2 Type tests .. 13
2.1 Equipment to be tested (equipment under test/EUT) ... 13
2.2 Special features for immunity and EMC tests .. 15
2.3 Withstand test conditions ... 16
2.4 Verification procedure .. 16
2.5 Requirements for test programmes and proper functioning verification procedures (PFVPs) to be provided by the manufacturer .. 16
2.6 General conditions for tests ... 17
3 Terms and definitions ... 17
4 Normal service conditions and requirements ... 24
4.1 Climatic conditions and requirements .. 24
4.2 Mechanical service conditions and requirements .. 25
4.3 Transport and storage conditions and requirements .. 26
4.4 Electrical service conditions and requirements ... 27
4.5 Special conditions and requirements ... 28
5 Functional requirements ... 28
5.1 Functional power supply and memory back-up requirements 30
5.2 Digital I/Os ... 31
5.3 Analogue I/Os .. 38
5.4 Communication interface requirements .. 39
5.5 Main processing unit(s) and memory(ies) of the PLC-system requirements 39
5.6 Remote input/output stations (RIOSs) requirements .. 39
5.7 Peripherals (PADTs, TEs, HMIs) requirements ... 39
5.8 PLC-system self-tests and diagnostics requirements .. 40
5.9 Functional earthing .. 40
5.10 Mounting requirements .. 40
5.11 General marking requirements .. 41
5.12 Requirements for normal service and functional type tests and verifications 41
5.13 Requirements for information on normal service and function 41
6 Normal service and functional type tests and verifications ... 41
6.1 Climatic tests ... 41
6.2 Mechanical tests ... 43
6.3 Verification of special functional requirements for power ports and memory back-up – Special immunity limits for power ports ... 45
6.4 Verification of input/output requirements ... 50
6.5 Verification of communication interface requirements ... 53
6.6 Verification of MPU requirements .. 53
6.7 Verification of remote I/O stations .. 53
6.8 Verification of peripheral (PADTs, TEs, HMIs) requirements .. 54
6.9 Verification of PLC-system self-tests and diagnostics ... 54
6.10 Verification of markings and manufacturer's documentation 54

7 General information to be provided by the manufacturer .. 54
 7.1 Information on type and content of documentation ... 54
 7.2 Information on compliance with this standard .. 55
 7.3 Information on reliability .. 55
 7.4 Information on other conditions .. 55
 7.5 Information on shipping and storage .. 55
 7.6 Information on a.c. and d.c. power supply ... 55
 7.7 Information on digital inputs (current sinking) .. 56
 7.8 Information on digital outputs for alternating currents (current sourcing) 56
 7.9 Information on digital outputs for direct current (current sourcing) 57
 7.10 Information on analogue inputs ... 57
 7.11 Information on analogue outputs ... 58
 7.12 Information on communication interfaces ... 59
 7.13 Information on main processing unit(s) and memory(ies) of the PLC-system 59
 7.14 Information on remote input/output stations (RIOSs) 60
 7.15 Information on peripherals (PADTs, TEs, HMIs) .. 61
 7.16 Information on self-tests and diagnostics ... 61

8 Electromagnetic compatibility (EMC) requirements ... 61
 8.1 General .. 61
 8.2 Emission requirements .. 62
 8.3 EMC immunity requirements ... 62
 8.4 Requirements for EMC tests and verifications ... 68
 8.5 Requirements for information on EMC ... 68

9 Electromagnetic compatibility (EMC) type tests and verifications 68
 9.1 Electromagnetic compatibility-related tests ... 68
 9.2 Test environment ... 69
 9.3 Measurement of radiated interference ... 69
 9.4 Measurement of conducted interference .. 69
 9.5 Electrostatic discharge .. 70
 9.6 Radiofrequency electromagnetic field – Amplitude modulated 71
 9.7 Power-frequency magnetic fields .. 71
 9.8 Fast transient bursts ... 72
 9.9 High-energy surges ... 73
 9.10 Conducted radiofrequency interference ... 74
 9.11 Damped oscillatory wave (for zone C only) ... 75
 9.12 Voltage drops and interruptions - Power port type tests and verifications 75

10 Electromagnetic compatibility (EMC) information to be provided by the manufacturer .. 76

11 Safety requirements .. 77
 11.1 Protection against electrical shock ... 77
 11.2 Protection against the spread of fire ... 82
 11.3 Limited power circuits .. 82
 11.4 Clearance and creepage distances requirements ... 83
 11.5 Flame-retardant requirements for non-metallic materials 89
 11.6 Temperature limits ... 90
 11.7 Enclosures ... 90
 11.8 Field-wiring terminals constructional requirements ... 91
Figure C.2 – 15 mm × 3 mm test pin ..110
Figure C.3 – 100 mm × 4 mm test pin ..110
Figure C.4 – 100 mm × 3 mm test pin ..111
Figure E.1 – Creepage distances of circuits where recurring peak voltages are generated ..114

Table 1 – General conditions for tests ...17
Table 2 – Operating ambient air temperature of PLC-systems ..24
Table 3 – Sinusoidal vibration service conditions for PLC-systems ..26
Table 4 – Free fall on concrete floor for portable and hand-held equipment26
Table 5 – Free fall on concrete floor in manufacturer’s original packaging27
Table 6 – Rated values and operating ranges of incoming power supply30
Table 7 – Standard operating ranges for digital inputs (current sinking)34
Table 8 – Rated values and operating ranges for current sourcing digital a.c. outputs35
Table 9 – Rated values and operating ranges (d.c.) for current sourcing digital d.c. outputs37
Table 10 – Rated values and impedance limits for analogue inputs ..38
Table 11 – Rated values and impedance limits for analogue outputs ..38
Table 12 – Dry-heat and cold withstand tests ..42
Table 13 – Change of temperature, withstand and immunity tests ...42
Table 14 – Cyclic (12 + 12) damp-heat test ..43
Table 15 – Immunity vibration test ..43
Table 16 – Immunity shock test ..44
Table 17 – Free-fall immunity/withstand tests (portable and hand-held equipment)44
Table 18 – Free-fall withstand test (units within manufacturer’s original packaging)44
Table 19 – Insertions/withdrawals of removable units ...45
Table 20 – Voltage-ripple and frequency-range immunity test (1) ..45
Table 21 – Third harmonic immunity test ..46
Table 22 – Gradual shut-down/start-up test ...48
Table 23 – Supply voltage variation tests ..48
Table 24 – Back-up duration withstand test ..49
Table 25 – Change of energy source test ..50
Table 26 – Overload and short-circuit tests for digital outputs ..51
Table 27 – Emission limits ..62
Table 28 – EMC immunity zones ...64
Table 29 – Criteria to prove the performance of a PLC-system against EMC disturbances64
Table 30 – Radiated immunity and enclosure ports (1) Conducted immunity, Zones A-B65
Table 31 – Conducted immunity, Zone B ..66
Table 32 – Conducted immunity, Zone A ..67
Table 33 – Voltage drops and interruptions ..68
Table 34 – Radiated emission measurement ...69
Table 35 – Conducted emission measurement ...69
Table 36 – Electrostatic discharge immunity test ...70
FOREWORD

1. The IEC (International Electrotechnical Commission) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of the IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, the IEC publishes International Standards. Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations having liaisons with the IEC also participate in this preparation. The IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.

2. The formal decisions or agreements of the IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested National Committees.

3. The documents produced have the form of recommendations for international use and are published in the form of standards, technical specifications, technical reports or guides and they are accepted by the National Committees in that sense.

4. In order to promote international unification, IEC National Committees undertake to apply IEC International Standards transparently to the maximum extent possible in their national and regional standards. Any divergence between the IEC Standard and the corresponding national or regional standard shall be clearly indicated in the latter.

5. The IEC provides no marking procedure to indicate its approval and cannot be rendered responsible for any equipment declared to be in conformity with one of its standards.

6. Attention is drawn to the possibility that some of the elements of this International Standard may be the subject of patent rights. The IEC shall not be held responsible for identifying any or all such patent rights.

International Standard IEC 61131-2 has been prepared by subcommittee 65B: Devices, of IEC technical committee 65: Industrial-process measurement and control.

This second edition of IEC 61131-2 cancels and replaces the first edition published in 1992 and constitutes a technical revision.

The text of this standard is based on the following documents:

<table>
<thead>
<tr>
<th>FDIS</th>
<th>Report on voting</th>
</tr>
</thead>
<tbody>
<tr>
<td>65B/470A/FDIS</td>
<td>65B/481/RVD</td>
</tr>
</tbody>
</table>

Full information on the voting for the approval of this standard can be found in the report on voting indicated in the above table.

This publication has been drafted in accordance with the ISO/IEC Directives, Part 2.

IEC 61131 consists of the following parts under the general title Programmable controllers:

Part 1: General information
Part 2: Equipment requirements and tests
Part 3: Programming languages
Part 4: User guidelines
Part 5: Communications
Part 6: Reserved
Part 7: Fuzzy control programming
Part 8: Guidelines for the application and implementation of programming languages
The committee has decided that the contents of this publication will remain unchanged until 2007. At this date, the publication will be

- reconfirmed;
- withdrawn;
- replaced by a revised edition, or
- amended.

A bilingual version of this standard may be issued at a later date.
INTRODUCTION

This part of IEC 61131 constitutes Part 2 of a series of standards on programmable controllers and the associated peripherals and should be read in conjunction with the other parts of the series.

Where a conflict exists between this and other IEC standards (except basic safety standards), the provisions of this standard should be considered to govern in the area of programmable controllers and their associated peripherals.

Compliance with Parts 1 and 2 of this standard cannot be claimed unless the requirements of 7.2 of this part are met.

Service and physical environment requirements are specified in Clause 4. Functional requirements are specified in Clause 5. Electromagnetic compatibility requirements are specified in Clause 8. Safety requirements are specified in Clause 11.

Terms of general use are defined in Part 1 of this standard. More specific terms are defined in each part.
PROGRAMMABLE CONTROLLERS –

Part 2: Equipment requirements and tests

1 General

1.1 Scope and object

This Part of IEC 61131 specifies requirements and related tests for programmable controllers (PLC) and their associated peripherals (for example, programming and debugging tools (PADTs), human-machine interfaces (HMIs), etc.) which have as their intended use the control and command of machines and industrial processes.

PLCs and their associated peripherals are intended to be used in an industrial environment and may be provided as open or enclosed equipment. If a PLC or its associated peripherals are intended for use in other environments, then the specific requirements, standards and installation practices for those other environments must be additionally applied to the PLC and its associated peripherals.

This standard also applies to any products performing the function of PLCs and/or their associated peripherals.

Equipment covered in this standard is intended for use in overvoltage category II (IEC 60664-1) in low-voltage installations, where the rated mains supply voltage does not exceed a.c. 1 000 V r.m.s. (50/60 Hz), or d.c. 1 500 V. (If PLCs or their associated peripherals are applied in overvoltage category III installations, then additional analysis will be required to determine the suitability of the equipment for those applications.)

This standard does not deal with the functional safety or other aspects of the overall automated system. PLCs, their application programme and their associated peripherals are considered as components of a control system.

Since PLCs are component devices, safety considerations for the overall automated system including installation and application are beyond the scope of this standard. However, PLC safety as related to electric shock and fire hazards, electrical interference immunity and error detecting of the PLC-system operation (such as the use of parity checking, self-testing diagnostics, etc.), are addressed. Refer to IEC 60364 or applicable national/local regulations for electrical installation and guidelines.

The object of this standard is

– to establish the definitions and identify the principal characteristics relevant to the selection and application of PLCs and their associated peripherals;
– to specify the minimum requirements for functional, electrical, mechanical, environmental and construction characteristics, service conditions, safety, EMC, user programming and tests applicable to PLCs and the associated peripherals.

This Part also specifies

a) service, storage and transportation requirements for PLCs and their associated peripherals (Clause 4);
b) functional requirements for PLCs and their associated peripherals (Clause 5);
c) EMC requirements for PLCs and their associated peripherals (Clause 8);
d) safety requirements for PLCs and their associated peripherals (Clause 11);