NOTICE AND DISCLAIMER

The information in this publication was considered technically sound by a consensus among persons engaged in its development at the time it was approved. Consensus does not necessarily mean there was unanimous agreement among every person participating in the development process.

The National Electrical Manufacturers Association (NEMA) standards and guideline publications, of which the document herein is one, are developed through a voluntary standards development process. This process brings together volunteers and/or seeks out the views of persons who have an interest in the topic covered by this publication. Although NEMA administers the process and establishes rules to promote fairness in the development of consensus, it does not write the documents, nor does it independently test, evaluate, or verify the accuracy or completeness of any information or the soundness of any judgments contained in its standards and guideline publications.

NEMA disclaims liability for any personal injury, property, or other damages of any nature, whether special, indirect, consequential, or compensatory, directly or indirectly resulting from the publication, use of, application, or reliance on this document. NEMA disclaims and makes no guaranty or warranty, express or implied, as to the accuracy or completeness of any information published herein, and disclaims and makes no warranty that the information in this document will fulfill any particular purpose(s) or need(s). NEMA does not undertake to guarantee the performance of any individual manufacturer’s or seller’s products or services by virtue of this standard or guide.

In publishing and making this document available, NEMA is not undertaking to render professional or other services for or on behalf of any person or entity, nor is NEMA undertaking to perform any duty owed by any person or entity to someone else. Anyone using this document should rely on his or her own independent judgment or, as appropriate, seek the advice of a competent professional in determining the exercise of reasonable care in any given circumstance. Information and other standards on the topic covered by this publication may be available from other sources, which the user may wish to consult for additional views or information not covered by this publication.

NEMA has no power, nor does it undertake to police or enforce compliance with the contents of this document. NEMA does not certify, test, or inspect products, designs, or installations for safety or health purposes. Any certification or other statement of compliance with any health- or safety-related information in this document shall not be attributable to NEMA and is solely the responsibility of the certifier or maker of the statement.
Table of Contents

1 Scope ... 7
2 References ... 7
3 Definitions ... 7
4 Types of Metering Devices .. 8
 4.1 Determination of Failure and Rejection ... 8
 4.2 Meter Type Certification Rejection Criteria ... 8
5 Performance tests – external influences performance verification ... 9
 5.1 Temperature rise (Section 4.7.2.9, Test No. 9) ... 9
 5.2 Metering device insulation test (Section 4.7.3.1, Test No. 15) ... 12
 5.3 Service Switch insulation test .. 12
 5.4 Voltage interruptions test (Section 4.7.3.2, Test No. 16) ... 12
 5.5 Effect of high voltage line surges (Section 4.7.3.3, Test No. 17) .. 12
 5.5.1 100 kHz ring wave (Section 4.7.3.3.1) ... 12
 5.5.2 1.2/50 microsecond – 8/20 microsecond Combination Wave (Section 4.7.3.3.2) 12
 5.6 Effect of temporary overloads (Section 4.7.3.6, Test No. 20) ... 13
 5.7 Effect of electrical fast transient/burst test (Section 4.7.3.11, Test No. 25) 13
 5.8 Effect of electrical oscillatory SWC test (Sections 4.7.3.11a, Test No. 25a) 14
 5.9 Effect of radio frequency interference (Section 4.7.3.12, Test No. 26) 14
 5.10 Effect of electrostatic discharge (ESD) (Section 4.7.3.14, Test No. 28) 15
 5.11 Effect of operating temperature (Section 4.7.3.16, Test No. 30) .. 15
 5.12 Effect of relative humidity (Section 4.7.3.17, Test No. 31) .. 16
 5.13 Mechanical shock (Section 4.7.3.18, Test No. 32) .. 16
 5.14 Transportation drop (Section 4.7.3.19, Test No. 33) .. 16
 5.15 Mechanical vibration (Section 4.7.3.20, Test No. 34) ... 17
 5.16 Transportation vibration (Section 4.7.3.21, Test No. 35) ... 17
 5.17 Continuous Class Ampere Test for Service Switch .. 17
 5.18 Cycling Operation and Heat Rise of Service Switch ... 18
 5.19 Through Fault Test (Section 4.7.3.6.3 – Test No. 20) ... 18
 5.20 Close on Fault ... 18
 5.21 Load Side Voltage Sense ... 19
 5.21.1 Informative Note .. 19
 5.21.2 Test Procedure ... 19
Foreword

With increasing emphasis being placed on technical reports both in the European Community and internationally, it is important to have an established mechanism for the registration of such technical reports. This is particularly important in areas of developing technology that may eventually be covered by International Standards but for which the only documentation currently available is an International Technical Report.

Accredited standards developers develop technical reports that are useful in conjunction with American National Standards. These are often informational or tutorial in nature, or give methods for application of an American National Standard. Registration of such documents is undertaken by the American National Standards Institute (ANSI) to encourage widespread use and acceptance, not only of the technical report, but also of the related American National Standard.

All material contained in a technical report that has been registered with ANSI is informational in nature. Technical reports may include for example reports of: technical research, tutorials, factual data obtained from a survey carried out among standards developers and/or national bodies, or information on the "state of the art" in relation to standards of national or international bodies on a particular subject. Technical reports may not to be used as a way to circumvent the regular consensus process for approval of an American National Standard.

With the advent of AMI (Advanced Metering Infrastructure) systems, several meter manufacturers have introduced residential meters with a built in service switch. The current ANSI standards do not adequately cover these types of meters. This technical report provides a testing basis to these types of meters with the intention to lead to a standardized method for testing electricity meters with an integral service switch.

Sections specific to ANSI C12.1-2008 have been referenced within the various tests of this document.

This technical report was developed within a working group under the guidance of ANSI C12 Subcommittee 1 with the intention for it to be used in conjunction with the ANSI C12.1-2008 standard. The use of both will help facilitate proper testing of meters with integral service switches.

This technical report was processed and approved for submittal to ANSI by Accredited Standards Committee for Electricity Metering, C12. At the time the committee approved this technical report, the C12 Committee had the following members:

Tom Nelson, Chairperson ANSI C12
Paul Orr, Secretary

ANSI C12 Main Committee

<table>
<thead>
<tr>
<th>Organization Represented:</th>
<th>Name of Representative:</th>
<th>Organization Represented:</th>
<th>Name of Representative:</th>
</tr>
</thead>
<tbody>
<tr>
<td>General Interest</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Austin Energy</td>
<td>H. Millican</td>
<td>MET Laboratories, Inc.</td>
<td>R. Subramaniam</td>
</tr>
<tr>
<td>Center for Neighborhood Technology</td>
<td>L. Kotewa</td>
<td>NIST</td>
<td>T. Nelson</td>
</tr>
<tr>
<td>EnerNex Corporation</td>
<td>A. Snyder</td>
<td>SAIC</td>
<td>D. Scott</td>
</tr>
<tr>
<td>Future DOS R&D Inc.</td>
<td>A. Moise</td>
<td>Tucker Engineering</td>
<td>R. Tucker</td>
</tr>
<tr>
<td>Producer</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aclara</td>
<td>Chris Sutton</td>
<td>Radian Research Inc.</td>
<td>T. Everidge</td>
</tr>
<tr>
<td>Company</td>
<td>Name</td>
<td>Company</td>
<td>Name</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>---------------------</td>
<td>-------------------------------</td>
<td>---------------------</td>
</tr>
<tr>
<td>Elster Solutions</td>
<td>S. Weikel</td>
<td>Schweitzer Engineering Labs, Inc.</td>
<td>T. Mooney</td>
</tr>
<tr>
<td>GE Energy</td>
<td>C. Crittenden</td>
<td>Sensus</td>
<td>K. O’Dell</td>
</tr>
<tr>
<td>Itron, Inc.</td>
<td>B. Cain</td>
<td>Trilliant Networks</td>
<td>M. Veillette</td>
</tr>
<tr>
<td>Landis+Gyr</td>
<td>J. Voisine</td>
<td>Watthour Engineering Company</td>
<td>L. Wren</td>
</tr>
<tr>
<td>Milbank Manufacturing Company</td>
<td>S. Glasgow</td>
<td></td>
<td></td>
</tr>
<tr>
<td>User</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AEP</td>
<td>M. Larijani</td>
<td>Florida Power & Light Co.</td>
<td>R. Siegert</td>
</tr>
<tr>
<td>Ameren Services</td>
<td>J. West</td>
<td>Georgia Power</td>
<td>L. Barto</td>
</tr>
<tr>
<td>Baltimore Gas & Electric</td>
<td>J. Thurber</td>
<td>Oncor</td>
<td>B. Johnson</td>
</tr>
<tr>
<td>Company</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Consumers Energy</td>
<td>D. Jirikovic</td>
<td>Pacific Gas & Electric</td>
<td>D. Y. Nguyen</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Company</td>
<td></td>
</tr>
<tr>
<td>Duke Energy</td>
<td>T. Morgan</td>
<td>Public Service Electric & Gas</td>
<td>D. Ellis</td>
</tr>
<tr>
<td>Florida Power & Light Co.</td>
<td>J. DeMars</td>
<td>Xcel Energy</td>
<td>D. Nordell</td>
</tr>
</tbody>
</table>

At the time ANSI C12 Subcommittee 1 approved this technical report, the working group comprised of the following:

Brent Cain, Itron (Work Group Chairperson)
Michael Anderson, Landis+Gyr
Larry Barto, Georgia Power
Curt Crittenden, GE Energy
Jim DeMars, Florida Power and Light
Avygdor Moise, FutureDos R&D
Young Nguyen, PG&E
David Scott, Plexus Research
Dana Smith, Itron
Kenny O’Dell, Sensus
Chris Sutton, Aclara
John Voisine, Landis+Gyr
Scott Weikel, Elster Solutions,
Alexander Yan, PG&E

Other contributions:

- Larry O’Dell, Itron, Inc. Original proposal. (Reference.: “Document to Establish Scope for Standard Covering Meters with Built in Disconnect Switches”, April 1, 2008.)
- Brent Cain, Itron, Inc. Submitted to ANSI C12 SC1. (Reference.: “Suggested Additions to the Next Revision of ANSI C12.1-2008”, October 8, 2008.)
- NEETRAC. Tests performed on various Service Switch meters were taken into consideration when developing this technical report. (Reference.: “Integral Disconnect Switches for Single-Phase Revenue Meters. Recommendations for ANSI C12.1”, October 2010.)
Suggestions for improvement to this technical report are welcome. They should be sent to:

National Electrical Manufacturers Association
Senior Technical Director
1300 North 17th Street
Suite 900
Rosslyn, VA 22209

Published by:

National Electrical Manufacturers Association, Suite 900
1300 North 17th Street, Rosslyn, VA 22209

© 2014 National Electrical Manufacturers Association. All rights, including translation into other languages, reserved under the Universal Copyright Convention, the Berne Convention for the Protection of Literary and Artistic Works, and the International and Pan American copyright conventions.

No part of this publication may be reproduced in any form, in an electronic retrieval system or otherwise, without the prior written permission of the publisher.

Printed in the United States of America.
Test Requirements for Metering Devices Equipped with Service Switches

1 Scope

This technical report identifies test requirements for meters containing a Service Switch. Most of the tests included in this report are tailored to fit Service Switch type meters and originate from the ANSI C12.1-2008 standard. Sections within the ANSI standard have been referenced within these tests where applicable. The intent is to use this technical report in conjunction with C12.1-2008. Other tests that are specific to the Service Switch have been added for completeness.

2 References

This technical report shall be used in conjunction with the following standard.

ANSI C12.1-2008
Code for Electricity Metering

IEC 60068-2-6:2012
Environmental testing – Part 2-6: Tests – Test Fc: Vibration (sinusoidal)

Basic environmental testing procedures – Part 2-27: Tests – Test Ea and guidance: Shock

IEC 61000-4-4:2012
Electromagnetic compatibility (EMC) – Part 4-4: Testing and measurement techniques – Electrical fast transient/burst immunity test

IEEE C37.90.1-2002

International Safe Transit Association, Test Procedure 1A, Performance Test for Individual Packaged - Products Weighing 150 lb. (68 kg) or Less, (revision date: 2001), Vibration and Shock

3 Definitions

For additional definitions, see ANSI C12.1.

Service Switch
A built-in switch that allows the electric utility to remotely disconnect/reconnect all phases of the electric service at a customer location by isolating the line side terminals of the meter from the load side terminals. Also referred to as a Remote Connect/Disconnect Switch.

Service Switch Check
A verification of the operation of the Service Switch by performing a Service Switch Cycle.

Service Switch Cycle
One open and one close operation of the Service Switch.

State, Closed
A state of the Service Switch, whereby current can flow through all phases of the Service Switch.