NEMA MG 1-2014

Motors and Generators
NOTICE AND DISCLAIMER

The information in this publication was considered technically sound by a consensus among persons engaged in its development at the time it was approved. Consensus does not necessarily mean there was unanimous agreement among every person participating in the development process.

The National Electrical Manufacturers Association (NEMA) standards and guideline publications, of which the document herein is one, are developed through a voluntary standards development process. This process brings together volunteers and/or seeks out the views of persons who have an interest in the topic covered by this publication. Although NEMA administers the process and establishes rules to promote fairness in the development of consensus, it does not write the documents, nor does it independently test, evaluate, or verify the accuracy or completeness of any information or the soundness of any judgments contained in its standards and guideline publications.

NEMA disclaims liability for any personal injury, property, or other damages of any nature, whether special, indirect, consequential, or compensatory, directly or indirectly resulting from the publication, use of, application, or reliance on this document. NEMA disclaims and makes no guaranty or warranty, express or implied, as to the accuracy or completeness of any information published herein, and disclaims and makes no warranty that the information in this document will fulfill any particular purpose(s) or need(s). NEMA does not undertake to guarantee the performance of any individual manufacturer’s or seller’s products or services by virtue of this standard or guide.

In publishing and making this document available, NEMA is not undertaking to render professional or other services for or on behalf of any person or entity, nor is NEMA undertaking to perform any duty owed by any person or entity to someone else. Anyone using this document should rely on his or her own independent judgment or, as appropriate, seek the advice of a competent professional in determining the exercise of reasonable care in any given circumstance. Information and other standards on the topic covered by this publication may be available from other sources, which the user may wish to consult for additional views or information not covered by this publication.

NEMA has no power, nor does it undertake to police or enforce compliance with the contents of this document. NEMA does not certify, test, or inspect products, designs, or installations for safety or health purposes. Any certification or other statement of compliance with any health- or safety-related information in this document shall not be attributable to NEMA and is solely the responsibility of the certifier or maker of the statement.
Changes made for MG 1-2014 will be unmarked in this version. Changes made for the MG 1-2014 revision are identified here.

Section I, Part 1
1.1 Revised text, updated, and occasionally added references
1.19.1.2 Updated references to subsections
1.19.1.3 Updated references to subsections
1.27.2 Added footnote
1.41.2 Reference to added clause
1.41.3 Reference to added clause
1.54 Revised and redefined

Section I, Part 4
4.4.8 Added subtitle

Section II, Part 10
10.39.1 Addition of letter m to Nameplate Marking Requirement

Section II, Part 12
12.31 Revised and added characteristics
12.58.1 Added references, revised determination of Motor Efficiency and Losses, deleted outdated information, added footnotes
12.58.2 Added and revised to include Design N, Design L and Design M single-speed single-phase squirrel-cage small motors, added efficiency levels to Table 12-10
12.59 Revised title to Efficiency Levels of Energy Efficient Polyphase Squirrel-Cage Random Wound Induction Motors Rated 600 Volts or Less at 60 Hz and added new paragraph
12.60 Revised title to Efficiency Levels of Premium Efficiency Random Wound Electric Motors Rated 600 Volts or Less at 60 Hz
12.60.1 Revised title to Random Wound Electric Motor, added paragraph
12.60.1.1 Added new subsection title Single-Phase Capacitor-Start Induction-Run or Capacitor-Start Capacitor-Run Small Motors and paragraph
12.60.1.2 Added new subsection title Single-Phase Capacitor-Start Capacitor-Run Small Motors and paragraph
12.60.1.3 Added new subsection title Polyphase Small Motors and paragraph
12.60.1.4 Added new subsection title Polyphase Medium Motors and paragraph
12.60.2 Revised 60 Hz Motors Rated Medium Voltage, 5000 Volts or Less (Form Wound) and paragraph
12.60.3 Revised 50 Hz Motors Rated 600 Volts or Less (Random Wound), paragraph, revised formulas, added 8 Pole category to table, revised values
12.61 Revised Table 12-11 title, revised Table 12-12, revised Table 12-13, deleted data in Table 12-14, added Table 12-15, added Table 12-16, added Table 12-17, added Table 12-18, added Table 12-19, added Table 12-20, added Table 12-21

Section III, Part 20
20.21 Addition of KW Values
20.21.1 Addition of subtitle, addition of KW Values
20.21.A Revision of referenced paragraphs
20.21.B Revised paragraph, added Table 20-A
20.21.C Revised paragraph, added Table 20-B
20.21.C.2 Revised paragraphs, added Table 20-C
20.21.C.3 Revised paragraphs, added Table 20-D
20.21.C.4 Added paragraph, added Table 20-E, Table 20-F, Table 20-G
20.25.1 Revised Nameplate Marking requirement by the addition of I (NEMA nominal efficiency)

© 2014 National Electrical Manufacturers Association
<table>
<thead>
<tr>
<th>Section IV, Part 31</th>
<th>31.3.5</th>
<th>Simplified text</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>31.4.4.3</td>
<td>Revised paragraph for clarification purposes</td>
</tr>
</tbody>
</table>
Changes made for MG 1-2009, Revision 1-2010 are marked by an orange line to the left of the changed material

Note: Where text has been revised in more than one version, only the most recent is color-coded

Example of change made for MG 1-2009, Revision 1-2010

Section I, Part 7
7.4.2 Replaced “inches” with “mils”
7.6.1 Revised text
Figure 7-1 Renamed figure
7.8.1 Revised text
Figure 7-6 Replaced figure
Table 7-1 Revised table
7.8.2 Deleted section
7.8.3 Deleted section
7.8.4 Deleted section
7.8.5 Revised reference to table
7.8.6 Revised reference to table
7.9.1 Revised reference to table
7.9.2 Revised text and reference to table
7.9.3 Deleted section
Table 7-2 Deleted table
Table 7-3 Deleted table
Table 7-4 Added table to replace Tables 7-2 and 7-3

Section II, Part 14
14.48 Added section
Changes made for MG 1-2009 are marked by a red line to the left of the changed material

Note: Where text has been revised in more than one version, only the most recent is color-coded

Example of change made for MG 1-2009

Section I, Part 1
1.1 Added: Reference to IEC 60034-30-2008
1.16 Deleted section
1.41.3 Added: Premium Efficiency Motor

Section I, Part 2
2.2 Added: “To prevent confusion with the numerals 1 and 0, the letters “I” and “O” shall not be used.”
Updated footnote references
Added and revised markings
Added: Reference to 2.67 for auxiliary devices
2.60.1.2 Revised Figure 2-48B for clarity
2.67 Added: Auxiliary Devices (entire section)

Section I, Part 4
Table 4-2 Dimension revised in column 6

Section II, Part 10
Table 10-5 Adjusted table

Section II, Part 12
12.41 In table, corrected synchronous speed of the 50 Hz machine
12.60.3 Added: Additional paragraphs, equation, and table
Table 12-14 Replaced Table 12-14
12.62 Revised 12.62a
For 12.62b and 12.62d, revised minimum insulation resistance
Added: Note
12.63 Note 2: Updated reference to 20.8

Section II, Part 13
13.2 Revised frame size

Section II, Part 18:
18.131 Figure 18-16: Dimension revised to 5.875

Section III, Part 20:
20.18.1 Revised 20.18.1a
For 20.18.1b and 20.18.1d, revised minimum insulation resistance
20.18.2 Revised 20.18.2a
For 20.18.2b and 20.18.2d, revised minimum insulation resistance
Added: Note

Section IV, Part 30:
Table 30-1 Revised footnote G.1 reference to 12.53
Changes made for MG 1-2006 Revision 1, published Nov. 20, 2007 (includes MG 1-2006 Errata) are marked by a blue line to the left of the changed material.

Note: Where text has been revised in more than one version, only the most recent is color-coded.

Example of change made for MG 1-2006 Revision 1

Contents

Entire Table of Contents was revised due to added sections and repagination.

Section I, Part 1
1.16 NEMA PREMIUM® EFFICIENCY ELECTRIC MOTOR
 Changed™ to®
 Deleted general paragraph, added:
 1.16.1 60 Hz
 1.16.2 50 Hz

Section I, Part 2
2.2 TERMINAL MARKINGS Footnotes
2.20.2 Induction Machines
2.24 DIRECTION OF ROTATION
2.60.1.1 Terminal Markings Using “T”
2.60.1.2 Terminal Markings in Accordance with IEC 60034-8 Using U, V, W
FIGURE 2-48B Added figure
2.61.6 Sixth
 Revised text

Section I, Part 3
3.1.8 Accessories and Components
 Inserted sentence

Section I, Part 4
4.9.4 Parallelism of Keyseats to Shaft Centerline
4.9.5 Lateral Displacement of Keyseats
Figure 4-7 Corrected specifications
4.9.8 Shaft Extension Key(s)
Table 4-7 Corrected specifications

Section II, Part 10 Ratings—AC Motors
10.38 NAMEPLATE TEMPERATURE RATINGS FOR ALTERNATING-CURRENT SMALL AND UNIVERSAL MOTORS
 Corrected reference 12.42.3
10.40.1 Medium Single-Phase and Polyphase Squirrel-Cage Motors
 Corrected references in text and footnote 2
10.42.2 Polyphase Wound-Rotor Motors
 Corrected references in text

Section II, Part 10 Ratings—DC Motors
10.66.2 Small Motors Except Those Rated 1/20 Horsepower and Less
 Corrected footnote references
Section II, Part 12 Ratings Tests and Performance — AC Motors

12.42.4 Temperature Rise for Air-Cooled Machines for Ambients Lower than 40°C, but Not Below 0°C
(Added section)

12.43.2 Temperature Rise for Air-Cooled Machines for Ambients Lower than 40°C, but Not Below 0°C
(Added section)

12.60 EFFICIENCY LEVEL OF PREMIUM EFFICIENCY ELECTRIC MOTORS
(Added @ throughout)
Tables 12-12 through 12-14 (Added @)

12.62 MACHINE WITH ENCAPSULATED OR SEALED WINDINGS—CONFORMANCE TESTS
(Clarified text in b and d)

Section II, Part 12 Ratings Tests and Performance — DC Motors

12.67.5 Temperature Rise for Air-Cooled Machines for Ambients Lower than 40°C, but Not Below 0°C
Added section

Section II, Part 15

15.41.2 Temperature Rise for Ambients Higher than 40°C
Added section

Section III, Part 20

20.8.1 Machines with a 1.0 Service Factor at Rated Load
Corrected reference in footnote

20.8.2 Machines with a 1.15 Service Factor at Service Factor Load
Corrected reference in footnote

20.18.1 Test for Stator Which Can Be Submerged
Clariﬁed text in b and d

20.18.2 Test for Stator Which Can Be Submerged
Clariﬁed text in b and d

Section III, Part 20

21.10.5 Temperature Rise for Air-Cooled Motors for Ambients Lower than 40°C, but Not Below 0°C
Deleted lower ambients in a and b

21.28.3 Unusual Service Conditions
Corrected references in subclause b.

21.37 COMPRESSOR FACTORS
Corrected reference

21.38 SURGE CAPABILITIES OF AC WINDINGS WITH FORM-WOUND COILS
Corrected reference

Section III, Part 23

23.9.3 Temperature Rise for Air-Cooled Machines for Ambients Lower than 40°C, but Not Below 0°C
Added section

Section III, Part 24

24.40.3 Temperature Rise for Air-Cooled Machines for Ambients Lower than 40°C, but Not Below 0°C
Added section
Section IV, Part 31
31.4.1.6 Temperature Rise for Air-Cooled Machines for Ambients Lower than 40° C, but Not Below 0° C
Added section

Section IV, Part 32
Table 32-3 corrected reference
32.6.2 Temperature Rise for Air-Cooled Machines for Ambients Lower than 40° C, but Not Below 0° C
Added section
32.26 GENERATOR TERMINAL HOUSING
Added “housing”

Section IV, Part 33
33.3.2.5 Temperature Rise for Air-Cooled Machines for Ambients Lower than 40° C, but Not Below 0° C
Added section
Changes made for MG 1-2003 Revision 2, published as MG 1-2006, are marked by a purple line to the left of the changed material

Note: Where text has been revised in more than one version, only the most recent is color-coded

Example of change made for MG 1-2003 Revision 2, published as MG 1-2006

Section I, Part 1
1.1 Referenced Standards updated to reflect current editions
1.70 NAMEPLATE MARKING
Entire section added

Section I, Part 3
3.1.8 Accessories and Components
Correction
3.1.11 Tests of an Assembled Group of Machines and Apparatus
Correction

Section I, Part 4
4.4.1 Dimensions for Alternating-Current Foot-Mounted Machines with Single Straight-Shaft Extension
Notes correction
4.4.2 Notes correction
4.4.3 Notes correction
4.5.1 Notes correction
4.5.2 Notes correction
4.5.3 Notes
4.9.3 Bottom of Keyseat to Shaft Surface
Figure 4-7 Corrected dimension
4.9.8 Shaft Extension Key(s)
correction

Section I, Part 9
9.1 SCOPE
changed "electrical motors" to "machines"
9.4 METHODS OF MEASUREMENT
updated references to ANSI standards
9.4.2 "The" (added; "Either" deleted) method specified in ANSI S12.56 may be used.
9.6.2 Corrected reference to 9.6.2b
Table 9-4 Updated ANSI standard references; added third column

Section II, Part 10
10.39 corrected section reference
10.39.6 deleted
10.40.1 Medium Single-Phase and Polyphase Squirrel-Cage Motors
corrected section reference
10.66 NAMEPLATE MARKING
correction
10.66.3 Medium Motors
correction

Section II, Part 12
12.3 HIGH-POTENTIAL TEST VOLTAGES FOR UNIVERSAL, INDUCTION, AND DIRECT-CURRENT MOTORS

© 2014 National Electrical Manufacturers Association
Corrections to Effective Test Voltage
Corrections to Note 3—80 percent

12.35 LOCKED-ROTOR CURRENT OF 3-PHASE SMALL AND MEDIUM SQUIRREL-CAGE INDUCTION MOTORS
deleted reference “60-hertz” and “rated at 230 volts”

12.40.1 Design A and B Motors
The pull-up torque of Design A and B
Added: 60- and 50-hertz

12.40.2 Design C Motors
The pull-up torque of Design C
Added: 60- and 50-hertz, single speed, polyphase squirrel-cage medium motors

12.54.1 Normal Starting Conditions
12.54.3 Considerations for Additional Starts
Table 12-7 SQUIRREL-CAGE INDUCTION MOTORS
Revised specifications

Section II, Part 14
14.43 ASEISMATIC CAPABILITY
Table 14-1 MEDIUM MOTORS—POLYPHASE INDUCTION
Correction to conventional specifications

Section II, Part 15
15.12 NAMEPLATE MARKING

Section II Part 18
Added and corrected headers throughout (editorial)
- DEFINITE PURPOSE MACHINES
- MOTORS FOR HERMETIC REFRIGERATION COMPRESSORS
- SMALL MOTORS FOR AIR CONDITIONING CONDENSERS AND EVAPORATOR FANS
- SMALL MOTORS FOR GASOLINE DISPENSING PUMPS
- SMALL MOTORS FOR HOME LAUNDRY EQUIPMENT
- MEDIUM AC POLYPHASE ELEVATOR MOTORS
- MEDIUM AC CRANE MOTORS
- MEDIUM SHELL-TYPE MOTORS FOR WOODWORKING AND MACHINE-TOOL APPLICATIONS

18.9 VARIATIONS
updated reference to 12.44
18.27 VARIATIONS FROM RATED VOLTAGE AND RATED FREQUENCY
updated reference to 12.44
18.41 VARIATIONS FROM RATED VOLTAGE AND RATED FREQUENCY
updated reference to 12.44
18.52 VARIATIONS FROM RATED VOLTAGE AND RATED FREQUENCY
updated reference to 12.44
18.74 VARIATIONS FROM RATED VOLTAGE AND RATED FREQUENCY
updated reference to 12.44
18.101 VARIATIONS FROM RATED VOLTAGE AND RATED FREQUENCY
updated reference to 12.44
18.111 NAMEPLATE MARKING
18.116 VARIATIONS FROM RATED VOLTAGE AND RATED FREQUENCY
updated reference to 12.44
18.128 VARIATIONS FROM RATED VOLTAGE AND RATED FREQUENCY
updated reference to 12.44
18.142 VARIATIONS FROM RATED VOLTAGE AND RATED FREQUENCY
updated reference to 12.44

© 2014 National Electrical Manufacturers Association
18.152 VARIATIONS FROM RATED VOLTAGE AND RATED FREQUENCY
updated reference to 12.44
18.153 VARIATIONS FROM RATED VOLTAGE AND RATED FREQUENCY
updated reference to 12.44
18.165 VARIATIONS FROM RATED VOLTAGE AND RATED FREQUENCY
updated reference to 12.44
18.166 VARIATIONS FROM RATED VOLTAGE AND RATED FREQUENCY
updated reference to 12.44
18.177 VARIATIONS FROM RATED VOLTAGE AND RATED FREQUENCY
updated reference to 12.44
18.178 VARIATIONS FROM RATED VOLTAGE AND RATED FREQUENCY
updated reference to 12.44
18.210 VARIATIONS FROM RATED VOLTAGE AND RATED FREQUENCY
updated reference to 12.44
18.211 NAMEPLATE MARKING
18.216 NAMEPLATE MARKING (Revised reference)
18.225 VARIATIONS FROM RATED VOLTAGE AND RATED FREQUENCY
updated reference to 12.44
18.230 DIMENSIONS AND TOLERANCES FOR ALTERNATING-CURRENT OPEN AND
TOTALLY ENCLOSED WOUND-ROTOR CRANE MOTORS HAVING ANTIFRICTION
BEARINGS
Deleted note
18.247 VARIATIONS FROM RATED VOLTAGE AND RATED FREQUENCY
updated reference to 12.44
18.264 NAMEPLATE MARKING
18.269.1 AC Torque Motors
18.269.2 DC Torque Motors

Section III Part 20
20.5 VOLTAGE RATINGS (complete replacement of existing text)
20.7.3.1 General
20.8.5 Temperature Rise for Air-Cooled Machines for Ambients Lower than 40º C,
but Not Below 0 º C
Added section
20.10.3 Motor Torques When Customer Specifies A Custom Load Curve
Added
20.10.4 Motor with 4.5 pu and Lower Locked-Rotor Current
Added
20.11 LOAD WK2 FOR POLYPHASE SQUIRREL-CAGE INDUCTION MOTORS
20.24.2 Voltage Unbalance Defined
Corrected specification in example
20.25 For some examples of additional information that may be included on the nameplate see
1.70.2.
20.25.5 Deleted
20.27 EMBEDDED TEMPERATURE DETECTORS
Revised text and dimensions in table
20.31.3 Units for Capability Requirements
20.35.8 Test Voltage Values

Section III Part 21
21.5 VOLTAGE RATINGS
Revised specification
21.5.1 Voltage Ratings
Added
21.5.2 Preferred motor output/voltage rating
Added
21.8.3.1 General
21.10.5 Temperature Rise for Air-Cooled Motors for Ambients Lower than 40° C, but not Below 0° C
 Added section
21.11 deleted text
21.11.1 General
 Added
21.11.2 Motor Torques When Customer Supplies Load Curve
21.25 For some examples of additional information that may be included on the nameplate see 1.70.2.
 Added

Section III Part 23
23.13 EFFICIENCY
23.24 For some examples of additional information that may be included on the nameplate see 1.70.2.
 Added

Section III Part 24
24.61 NAMEPLATE MARKING

Section IV Part 30
30.1.3 Power Factor Correction
30.2.2.2.4 Figure 30-2 THE EFFECT OF REDUCED COOLING ON THE TORQUE CAPABILITY AT REDUCED SPEEDS OF 60 HZ NEMA DESIGN A AND B MOTORS
30.2.2.8 Motor Torque During Operation Above Base Speed
30.2.2.8 Voltage Stress

Section IV Part 31
31.5.1 Variable Torque Applications

Section IV Part 30
32.24 NAMEPLATE MARKING
 Revised additional information

Section IV Part 30
33.3.2.2 Embedded Temperature Detectors

Index
 Revised references throughout
Changes made for MG 1-2003, Revision 1-2004 are marked by a green line to the left of the changed material

Note: Where text has been revised in more than one version, only the most recent is color-coded

Example of change made for MG 1-2003 Revision 1-2004

Contents

pages vii, viii, xii, xv, xxvii

Section I, Part 5
5.1 Scope
5.3.4 Table 5-1
5.4.1 Indication of Degree of Protection
5.6 GENERAL REQUIREMENTS FOR TESTS
5.7 TESTS FOR FIRST CHARACTERISTIC NUMERAL
Table 5-3: TEST AND ACCEPTANCE CONDITIONS FOR FIRST CHARACTERISTIC NUMERAL
5.8.1 Test Conditions
5.8.2.1 Allowable Water Leakage
5.8.2.2 Post Water Electrical Test
Figure 5-1: STANDARD TEST FINGER NOTES—
Figure 5-2 Added: (Reproduced with permission of the IEC, which retains the copyright.)
Figure 5-3 Added: (Reproduced with permission of the IEC, which retains the copyright.)
Figure 5-4 Added: (Reproduced with permission of the IEC, which retains the copyright.)
Figure 5-5 Added: (Reproduced with permission of the IEC, which retains the copyright.)
Figure 5-6 Added: (Reproduced with permission of the IEC, which retains the copyright.)

Section II, Part 12
12.51.1 General-Purpose Alternating-Current Motors of the Open Type
Table 12-4 Note: *In the case of polyphase squirrel-cage motors, these service factors apply only to Design A, B, and C motors.
12.51.2 Other Motors
12.58.2 Efficiency of Polyphase Squirrel-Cage Medium Motors with Continuous Ratings

Section II DC SMALL AND MEDIUM MOTORS
Added Header (editorial) to odd pages

Section II, Part 14
14.3 UNUSUAL SERVICE CONDITIONS
b. Operation where: (revised text)
1. There is excessive departure from rated voltage or frequency, or both (see 12.44 for alternating current motors and 12.68 for direct-current motors)
3. The alternating-current supply voltage is unbalanced by more than 1 percent (see 12.45 and 14.36)
14.42 APPLICATION OF V-BELT SHEAVES TO ALTERNATING CURRENT MOTORS HAVING ANTIFRICTION BEARINGS
14.42.1 Dimensions
14.42.1.1 Selected Motor Ratings
14.42.1.2 Other Motor Ratings
14.42.2 Radial Overhung Load Limitations
Table 14-1 Note: The width of the sheave shall be not greater than that required to transmit the indicated horsepower but in no case shall it be wider than 2(N-W) - 0.25.
Table 14-1A Added 2004

© 2014 National Electrical Manufacturers Association
Section III, Part 20
20.17.2 Test Voltage—Primary Windings Footnote

Section III, Part 21
21.35.1 Undamped Natural Frequency

Section IV, Part 30
30.0 SCOPE
30.2.2.2.2 Torque Derating Based on Reduction in Cooling
30.2.2.2.4 Motor Torque During Operation Above Base Speed
Figure 30-4 Notes
Figure 30-4 Note: a. Standard NEMA Design A and B motors in frames per Part 13.

Index
Revised references on pages 3, 4, 5
Changes made for MG 1-2011 are marked by a teal line to the left of the changed material.

Note: Where text has been revised in more than one version, only the most recent is color-coded.

Example of change made for MG 1-2011

Part I, Section I

1.41.2 Addition of or 20.21 B
1.41.3 Addition of or 20.21 C

Part 12, Section II

12.59 Addition of RANDOM WOUND
Table 12-11 Addition of (RANDOM WOUND) to open and enclosed motor table title
Table 12-12 Removed open and enclosed motor table efficiency values for 6 pole 300-500HP motors
and added 8 pole efficiency values
Table 12-13 Removed table efficiency values for 6 pole 400, 450 and 500 HP motors and added 8 pole
efficiency values
Table 12-14 Removed efficiency values for 6 pole 400, 450 and 500 HP motors

Part 20, Section III

20.21 Revised
20.21A Added efficiency of polyphase squirrel cage large motors with continuous ratings
20.21B Added efficiency levels of energy efficient polyphase squirrel-cage random wound large induction
Motors
Table 20-A Addition of full load efficiency table
20.21C Addition of efficiency level of premium efficiency large electric motors
20.21.C.1 Addition of 60Hz motors rated 600 volts or less
Table 20-B Addition of full load premium efficiency table
20.21.C.2 Addition of 60Hz motors rated 5000 volts or less
Table 20-C Addition of full load efficiency values for 60Hz premium efficiency of motors rated 5000Volts
or less
20.21.C.3 Addition of 50Hz motors rated 600volts or less
Table 20-D Addition of full load efficiency values for 50Hz premium efficiency motors 600 volts or less
20.25.1 Addition of item
CONTENTS

Section I GENERAL STANDARDS APPLYING TO ALL MACHINES

Part 1—REFERENCED STANDARDS AND DEFINITIONS ... 1-1
 1.1 REFERENCED STANDARDS .. 1-1
 DEFINITIONS ... 1-5

CLASSIFICATION ACCORDING TO SIZE .. 1-5
 1.2 MACHINE ... 1-5
 1.3 SMALL (FRACTIONAL) MACHINE ... 1-5
 1.4 MEDIUM (INTEGRAL) MACHINE ... 1-5
 1.4.1 Alternating-Current Medium Machine .. 1-5
 1.4.2 Direct-Current Medium Machine ... 1-5
 1.5 LARGE MACHINE ... 1-5
 1.5.1 Alternating-Current Large Machine ... 1-5
 1.5.2 Direct-Current Large Machine ... 1-6

CLASSIFICATION ACCORDING TO APPLICATION ... 1-6
 1.6 GENERAL PURPOSE MOTOR .. 1-6
 1.6.1 General-Purpose Alternating-Current Motor .. 1-6
 1.6.2 General-Purpose Direct-Current Small Motor ... 1-6
 1.7 GENERAL-PURPOSE GENERATOR .. 1-6
 1.8 INDUSTRIAL SMALL MOTOR ... 1-6
 1.9 INDUSTRIAL DIRECT-CURRENT MEDIUM MOTOR ... 1-6
 1.10 INDUSTRIAL DIRECT-CURRENT GENERATOR ... 1-6
 1.11 DEFINITE-PURPOSE MOTOR ... 1-7
 1.12 GENERAL INDUSTRIAL MOTORS ... 1-7
 1.13 METAL ROLLING MILL MOTORS ... 1-7
 1.14 REVERSING HOT MILL MOTORS ... 1-7
 1.15 SPECIAL-PURPOSE MOTOR ... 1-7

CLASSIFICATION ACCORDING TO ELECTRICAL TYPE ... 1-8
 1.17 GENERAL .. 1-8
 1.17.1 Electric Motor .. 1-8
 1.17.2 Electric Generator .. 1-8
 1.17.3 Electric Machines .. 1-8
 1.18 ALTERNATING-CURRENT MOTORS .. 1-9
 1.18.1 Induction Motor ... 1-9
 1.18.2 Synchronous Motor .. 1-9
 1.18.3 Series-Wound Motor .. 1-10
 1.19 POLYPHASE MOTORS .. 1-10
 1.19.1 Design Letters of Polyphase Squirrel-Cage Medium Motors 1-10
 1.20 SINGLE-PHASE MOTORS .. 1-10
 1.20.1 Design Letters of Single-Phase Small Motors .. 1-10
 1.20.2 Design Letters of Single-Phase Medium Motors ... 1-11
 1.20.3 Single-Phase Squirrel-Cage Motors ... 1-11
 1.20.4 Single-Phase Wound-Rotor Motors ... 1-12
 1.21 UNIVERSAL MOTORS ... 1-12
 1.21.1 Series-Wound Motor .. 1-12
 1.21.2 Compensated Series-Wound Motor .. 1-12
 1.22 ALTERNATING-CURRENT GENERATORS ... 1-12
 1.22.1 Induction Generator .. 1-12
 1.22.2 Synchronous Generator ... 1-13
 1.23 DIRECT-CURRENT MOTORS ... 1-13
 1.23.1 Shunt-Wound Motor .. 1-13
 1.23.2 Series-Wound Motor .. 1-13

© 2014 National Electrical Manufacturers Association
1.51 PULL-OUT TORQUE... 1-22
1.52 PULL-IN TORQUE... 1-22
1.53 LOCKED-ROTOR CURRENT.. 1-22
1.54 NO-LOAD CURRENT.. 1-22
1.55 TEMPERATURE TESTS... 1-22
1.56 AMBIENT TEMPERATURE... 1-22
1.57 HIGH-POTENTIAL TESTS.. 1-22
1.58 STARTING CAPACITANCE FOR A CAPACITOR MOTOR 1-22
1.59 RADIAL MAGNETIC PULL AND AXIAL CENTERING FORCE 1-23
1.59.1 Radial Magnetic Pull... 1-23
1.59.2 Axial Centering Force... 1-23
1.60 INDUCTION MOTOR TIME CONSTANTS............................. 1-23
1.60.1 General.. 1-23
1.60.2 Open-Circuit AC Time Constant...................................... 1-23
1.60.3 Short-Circuit AC Time Constant..................................... 1-23
1.60.4 Short-Circuit DC Time Constant................................. 1-23
1.60.5 X/R Ratio.. 1-23
1.60.6 Definitions (See Figure 1-4)... 1-23
COMPLETE MACHINES AND PARTS.. 1-24
1.61 SYNCHRONOUS GENERATOR—COMPLETE....................... 1-24
1.61.1 Belted Type... 1-24
1.61.2 Engine Type.. 1-24
1.61.3 Coupled Type... 1-24
1.62 DIRECT-CURRENT GENERATOR—COMPLETE.................... 1-24
1.62.1 Belted Type... 1-24
1.62.2 Engine Type.. 1-24
1.62.3 Coupled Type... 1-24
1.63 FACE AND FLANGE MOUNTING... 1-25
1.63.1 Type C Face.. 1-25
1.63.2 Type D Flange... 1-25
1.63.3 Type P Flange... 1-25
CLASSIFICATION OF INSULATION SYSTEMS................................. 1-25
1.65 INSULATION SYSTEM DEFINED... 1-25
1.65.1 Coil Insulation with its Accessories................................. 1-25
1.65.2 Connection and Winding Support Insulation.................. 1-25
1.65.3 Associated Structural Parts... 1-25
1.66 CLASSIFICATION OF INSULATION SYSTEMS...................... 1-25
MISCELLANEOUS... 1-26
1.70 NAMEPLATE MARKING... 1-26
1.70.1 Nameplate... 1-26
1.70.2 Additional Nameplate Markings................................. 1-26
1.71 CODE LETTER... 1-27
1.72 THERMAL PROTECTOR.. 1-27
1.73 THERMALLY PROTECTED.. 1-27
1.74 OVER TEMPERATURE PROTECTION............................... 1-27
1.75 PART-WINDING START MOTOR.. 1-27
1.76 STAR (WYE) START, DELTA RUN MOTOR.......................... 1-27
1.77 CONSTANT FLUX... 1-27
1.78 DEVIATION FACTOR... 1-28
1.79 MARKING ABBREVIATIONS FOR MACHINES..................... 1-28

Section I GENERAL STANDARDS APPLYING TO ALL MACHINES
Part 2—TERMINAL MARKINGS
GENERAL... 2-1
2.1 LOCATION OF TERMINAL MARKINGS............................... 2-1
2.2 TERMINAL MARKINGS... 2-1
2.60 GENERAL PRINCIPLES FOR TERMINAL MARKINGS FOR POLYPHASE INDUCTION MOTORS ... 2-25
 2.60.1 Method of Marking ... 2-25
 2.60.2 Three-Phase, Two Speed Motors .. 2-27
 2.60.3 Two-Phase Motors.. 2-27

2.61 TERMINAL MARKINGS FOR THREE-PHASE SINGLE-SPEED INDUCTION MOTORS ... 2-27
 2.61.1 First ... 2-27
 2.61.2 Second ... 2-27
 2.61.3 Third ... 2-27
 2.61.4 Fourth ... 2-27
 2.61.5 Fifth .. 2-27
 2.61.6 Sixth .. 2-28

2.62 TERMINAL MARKINGS FOR Y- AND DELTA-CONNECTED DUAL VOLTAGE MOTORS ... 2-28

2.63 TERMINAL MARKINGS FOR THREE-PHASE TWO-SPEED SINGLE-WINDING INDUCTION MOTORS ... 2-28

2.64 TERMINAL MARKINGS FOR Y- AND DELTA-CONNECTED THREE-PHASE TWO-SPEED SINGLE-WINDING MOTORS ... 2-28

2.65 TERMINAL MARKINGS FOR THREE-PHASE INDUCTION MOTORS HAVING TWO OR MORE SYNCHRONOUS SPEEDS OBTAINED FROM TWO OR MORE INDEPENDENT WINDINGS ... 2-34
 2.65.1 Each Independent Winding Giving One Speed ... 2-34
 2.65.2 Each Independent Winding Reconnectible to Give Two Synchronous Speeds ... 2-34
 2.65.3 Two or More Independent Windings at Least One of Which Gives One Synchronous Speed and the Other Winding Gives Two Synchronous Speeds ... 2-35

2.66 TERMINAL MARKINGS OF THE ROTORS OF WOUND-ROTOR INDUCTION MOTORS ... 2-38

2.67 TERMINAL MARKINGS ... 2-38

Section I GENERAL STANDARDS APPLYING TO ALL MACHINES
Part 3 HIGH-POTENTIAL TESTS

3.1 HIGH-POTENTIAL TESTS ... 3-1
 3.1.1 Safety ... 3-1
 3.1.2 Definition ... 3-1
 3.1.3 Procedure ... 3-1
 3.1.4 Test Voltage ... 3-1
 3.1.5 Condition of Machine to be Tested ... 3-1
 3.1.6 Duration of Application of Test Voltage .. 3-1
 3.1.7 Points of Application of Test Voltage ... 3-2
 3.1.8 Accessories and Components .. 3-2
 3.1.9 Evaluation of Dielectric Failure ... 3-2
 3.1.10 Initial Test at Destination ... 3-2
Section I GENERAL STANDARDS APPLYING TO ALL MACHINES
Part 4—DIMENSIONS, TOLERANCES, AND MOUNTING

4.1 LETTERING OF DIMENSION SHEETS ... 4-1
4.2 SYSTEM FOR DESIGNATING FRAMES .. 4-10
4.2.1 Frame Numbers .. 4-10
4.2.2 Frame Letters .. 4-11
4.3 MOTOR MOUNTING AND TERMINAL HOUSING LOCATION 4-12
4.4 DIMENSIONS—AC MACHINES ... 4-14
4.4.1 Dimensions for Alternating-Current Foot-Mounted Machines with Single Straight-Shaft Extension ... 4-14
4.4.2 Shaft Extensions and Key Dimensions for Alternating-Current Foot-Mounted Machines with Single Tapered or Double Straight/Tapered Shaft Extension .. 4-16
4.4.3 Shaft Extension Diameters and Key Dimensions for Alternating-Current Motors Built in Frames Larger than the 449T Frames .. 4-17
4.4.4 Dimensions for Type C Face-Mounting Foot or Footless Alternating-Current Motors ... 4-17
4.4.5 Dimensions for Type FC Face Mounting for Accessories on End of Alternating-Current Motors .. 4-18
4.4.6 Dimensions for Type D Flange-Mounting Foot or Footless Alternating-Current Motors ... 4-19
4.5 DIMENSIONS—DC MACHINES ... 4-20
4.5.1 Dimensions for Direct-Current Small Motors with
Single Straight Shaft Extension .. 4-20
4.5.2 Dimensions for Foot-Mounted Industrial Direct-Current Machines 4-21
4.5.3 Dimensions for Foot-Mounted Industrial Direct-Current Motors 4-25
4.5.4 Dimensions for Type C Face-Mounting Direct-Current Small Motors 4-26
4.5.5 Dimensions for Type C Face-Mounting Industrial Direct-Current Motors 4-26
4.5.6 Dimensions for Type C Face-Mounting Industrial Direct-Current Motors 4-27
4.5.7 Dimensions for Type D Flange-Mounting Industrial Direct-Current Motors 4-27
4.5.8 Base Dimensions for Type P and PH Vertical Solid-Shaft Industrial Direct-Current Motors .. 4-28
4.5.9 Dimensions for Type FC Face Mounting for Accessories on End Opposite Drive End of Industrial Direct-Current Motors .. 4-28
4.6 SHAFT EXTENSION DIAMETERS FOR UNIVERSAL MOTORS 4-28
4.7 TOLERANCE LIMITS IN DIMENSIONS ... 4-29
4.8 KNOCKOUT AND CLEARANCE HOLE DIAMETER FOR MACHINE TERMINAL BOXES .. 4-29
4.9 TOLERANCES ON SHAFT EXTENSION DIAMETERS AND
KEYSEATS .. 4-29
4.9.1 Shaft Extension Diameter ... 4-29
4.9.2 Keyseat Width ... 4-29
4.9.3 Bottom of Keyseat to Shaft Surface ... 4-29
4.9.4 Parallelism of Keyseats to Shaft Centerline .. 4-30
4.9.5 Lateral Displacement of Keyseats .. 4-30
4.9.6 Diameters and Keyseat Dimensions .. 4-30
4.9.7 Shaft Runout .. 4-30
4.9.8 Shaft Extension Key(s) .. 4-31
4.10 RING GROOVE SHAFT KEYSEATS FOR VERTICAL SHAFT MOTORS .. 4-32
4.11 METHOD OF MEASUREMENT OF SHAFT RUNOUT AND OF ELECTRICITY AND FACE RUNOUT OF MOUNTING SURFACES 4-32
4.11.1 Shaft Runout .. 4-32

© 2014 National Electrical Manufacturers Association
Section I GENERAL STANDARDS APPLYING TO ALL MACHINES

Part 5—ROTATING ELECTRICAL MACHINES—CLASSIFICATION OF DEGREES OF PROTECTION PROVIDED BY ENCLOSURES FOR ROTATING MACHINES

5.1 SCOPE ... 5-1
5.2 DESIGNATION .. 5-1
 5.2.1 Single Characteristic Numeral 5-1
 5.2.2 Supplementary Letters 5-1
 5.2.3 Example of Designation 5-2
 5.2.4 Most Frequently Used 5-2
5.3 DEGREES OF PROTECTION—FIRST CHARACTERISTIC NUMERAL 5-2
 5.3.1 Indication of Degree of Protection 5-2
 5.3.2 Compliance to Indicated Degree of Protection 5-2
 5.3.3 External Fans ... 5-2
 5.3.4 Drain Holes .. 5-3
 Table 5-1 ... 5-3
5.4 DEGREES OF PROTECTION—SECOND CHARACTERISTIC NUMERAL 5-4
 5.4.1 Indication of Degree of Protection 5-4
 5.4.2 Compliance to Indicated Degree of Protection 5-4
 Table 5-2 ... 5-4
5.5 MARKING .. 5-5
5.6 GENERAL REQUIREMENTS FOR TESTS .. 5-5
 5.6.1 Adequate Clearance .. 5-5
5.7 TESTS FOR FIRST CHARACTERISTIC NUMERAL .. 5-5
 Table 5-3 ... 5-6
5.8 TESTS FOR SECOND CHARACTERISTIC NUMERAL 5-7
 5.8.1 Test Conditions .. 5-7
 Table 5-4 ... 5-8
 5.8.2 Acceptance Conditions 5-10
 5.8.3 Allowable Water Leakage 5-10
5.9 REQUIREMENTS AND TESTS FOR OPEN WEATHER-PROTECTED MACHINES 5-10
 Figure 5-1 ... 5-11
 Figure 5-2 ... 5-12
 Figure 5-3 ... 5-13
 Figure 5-4 ... 5-14
 Figure 5-5 ... 5-15
 Figure 5-6 ... 5-16
Section I GENERAL STANDARDS APPLYING TO ALL MACHINES
Part 9—ROTATING ELECTRICAL MACHINES—SOUND POWER LIMITS
AND MEASUREMENT PROCEDURES

9.1 SCOPE .. 9-1
9.2 GENERAL .. 9-1
9.3 REFERENCES .. 9-1
9.4 METHODS OF MEASUREMENT .. 9-1
9.5 TEST CONDITIONS .. 9-2
9.5.1 Machine Mounting .. 9-2
9.5.2 Test Operating Conditions .. 9-2
9.6 SOUND POWER LEVEL .. 9-2
9.7 DETERMINATION OF SOUND PRESSURE LEVEL .. 9-3
 Table 9-1 .. 9-4
 Table 9-2 .. 9-5
 Table 9-3 .. 9-5
 Table 9-4 .. 9-6

Section II SMALL (FRACTIONAL) AND MEDIUM (INTEGRAL) MACHINES
Part 10—AC SMALL AND MEDIUM MOTORS

10.0 SCOPE ... 10-1
10.30 VOLTAGES ... 10-1
10.31 FREQUENCIES .. 10-1
10.31.1 Alternating-Current Motors .. 10-1
10.31.2 Universal Motors ... 10-1
10.32 HORSEPOWER AND SPEED RATINGS .. 10-2
10.32.1 Small Induction Motors, Except Permanent-Split Capacitor
 Motors Rated 1/3 Horsepower and Smaller and Shaded-Pole Motors 10-2
10.32.2 Small induction Motors, permanent-Split Capacitor Motors
 Rated 1/3 Horsepower and Smaller and Shaded-Pole Motors 10-2
10.32.3 Single-Phase Medium Motors .. 10-3
10.32.4 Polyphase Medium Induction Motors .. 10-3
10.32.5 Universal Motors .. 10-4
10.33 HORSEPOWER RATINGS OF MULTISPEED MOTORS 10-4
10.33.1 Constant Horsepower .. 10-4
10.33.2 Constant Torque .. 10-5
10.33.3 Variable Torque .. 10-5
10.34 BASIS FOR HORSEPOWER RATING ... 10-5
10.34.1 Basis of Rating ... 10-5
10.34.2 Temperature .. 10-5
10.34.3 Minimum Breakdown Torque .. 10-5
10.35 SECONDARY DATA FOR WOUND-ROTOR-MOTORS 10-8

© 2014 National Electrical Manufacturers Association
10.36 TIME RATINGS FOR SINGLE-PHASE AND POLYPHASE
INDUCTION MOTORS... 10-8
10.37 CODE LETTERS (FOR LOCKED-ROTOR KVA).. 10-8
 10.37.1 Nameplate Marking.. 10-8
 10.37.2 Letter Designation.. 10-8
 10.37.3 Multispeed Motors.. 10-8
 10.37.4 Single-Speed Motors.. 10-8
 10.37.5 Broad- or Dual-Voltage Motors... 10-9
 10.37.6 Dual-Frequency Motors... 10-9
 10.37.7 Part-Winding-Start Motors.. 10-9
10.38 NAMEPLATE TEMPERATURE RATINGS FOR ALTERNATING-CURRENT
SMALL AND UNIVERSAL MOTORS .. 10-9
10.39 NAMEPLATE MARKING FOR ALTERNATING-CURRENT SMALL
AND UNIVERSAL MOTORS.. 10-9
 10.39.1 Alternating-Current Single-Phase and Polyphase Squirrel-Cage Motors, Except Those Included in 10.39.2, 10.39.3,
and 10.39.4 .. 10-9
 10.39.2 Motors Rated Less than 1/20 Horsepower... 10-10
 10.39.3 Universal Motors... 10-10
 10.39.4 Motors Intended for Assembly in a Device Having its
 Own Markings... 10-10
 10.39.5 Motors for Dual Voltage... 10-10
10.40 NAMEPLATE MARKING FOR MEDIUM SINGLE-PHASE AND
POLYPHASE INDUCTION MOTORS .. 10-11
 10.40.1 Medium Single-Phase and Polyphase Squirrel-Cage Motors..................... 10-11
 10.40.2 Polyphase Wound-Rotor Motors... 10-13

Section II SMALL (FRACTIONAL) AND MEDIUM (INTEGRAL) MACHINES
Part 10—DC SMALL AND MEDIUM MOTORS
10.0 SCOPE .. 10-14
10.60 BASIS OF RATING ... 10-14
 10.60.1 Small Motors.. 10-14
 10.60.2 Medium Motors... 10-14
10.61 POWER SUPPLY IDENTIFICATION FOR DIRECT-CURRENT
MEDIUM MOTORS .. 10-14
 10.61.1 Supplies Designated by a Single Letter... 10-14
 10.61.2 Other Supply Types ... 10-14
10.62 HORSEPOWER, SPEED, AND VOLTAGE RATINGS .. 10-15
 10.62.1 Direct-Current Small Motors .. 10-15
 10.62.2 Industrial Direct-Current Motors.. 10-15
10.63 NAMEPLATE TIME RATING ... 10-16
10.64 TIME RATING FOR INTERMITTENT, PERIODIC, AND VARYING
DUTY ... 10-16
10.65 NAMEPLATE MAXIMUM AMBIENT TEMPERATURE AND
INSULATION SYSTEM CLASS .. 10-16
10.66 NAMEPLATE MARKING .. 10-18
 10.66.1 Small Motors Rated 1/20 Horsepower and Less.. 10-18
 10.66.2 Small Motors Except Those Rated 1/20 Horsepower and
 Less .. 10-18
 10.66.3 Medium Motors .. 10-18

© 2014 National Electrical Manufacturers Association
12.42.1 Alternating-Current Small Motors—Motor Nameplates
Marked with Insulation System Designation and Ambient
Temperature...12-14
12.42.2 Universal Motors...12-15
12.42.3 Temperature Rise for Ambients Higher than 40°C..........................12-15
12.42.4 Temperature Rise for Air-Cooled Machines for Ambients Lower than 40°C
but Not Below 0°C..12-16
12.43 TEMPERATURE RISE FOR MEDIUM SINGLE-PHASE AND
POLYPHASE INDUCTION MOTORS ...12-17
12.43.1 Temperature Rise for Ambients Higher than 40°C..........................12-17
12.43.2 Temperature Rise for Air-Cooled Machines for Ambients Lower than 40°C,
but Not Below 0°C..12-18
12.44 VARIATION FROM RATED VOLTAGE AND RATED FREQUENCY.........................12-19
12.44.1 Running..12-19
12.44.2 Starting...12-19
12.45 VOLTAGE UNBALANCE..12-19
12.46 VARIATION FROM RATED SPEED..12-19
12.47 NAMEPLATE AMPERES—ALTERNATING-CURRENT MEDIUM
MOTORS...12-19
12.48 OCCASIONAL EXCESS CURRENT..12-19
12.49 STALL TIME...12-20
12.50 PERFORMANCE OF MEDIUM MOTORS WITH DUAL VOLTAGE
RATING (SUGGESTED STANDARD FOR FUTURE DESIGN)12-20
12.51 SERVICE FACTOR OF ALTERNATING-CURRENT MOTORS..........................12-20
12.51.1 General-Purpose Alternating-Current Motors of the Open Type12-20
12.51.2 Other Motors ..12-21
12.52 OVERSPEEDS FOR MOTORS..12-21
12.52.1 Squirrel-Cage and Wound-Rotor Motors...12-21
12.52.2 General-Purpose Squirrel-Cage Induction Motors............................12-21
12.52.3 General-Purpose Design A and B Direct-Coupled Drive Squirrel-Cage
Induction Motors..12-23
12.52.4 Alternating-Current Series and Universal Motors..............................12-23
12.53 MACHINE SOUND (MEDIUM INDUCTION MOTORS).................................12-25
12.54 NUMBER OF STARTS...12-25
12.54.1 Normal Starting Conditions...12-25
12.54.2 Other than Normal Starting Conditions..12-25
12.54.3 Considerations for Additional Starts...12-25
12.55 ROUTINE TESTS FOR POLYPHASE MEDIUM INDUCTION MOTORS...........12-25
12.55.1 Method of Testing..12-25
12.55.2 Typical Tests on Completely Assembled Motors.................................12-26
12.55.3 Typical of Tests on Motors Not Completely Assembled......................12-26
12.56 THERMAL PROTECTION OF MEDIUM MOTORS.................................12-27
12.56.1 Winding Temperature...12-27
12.56.2 Trip Current...12-29
12.57 OVERTEMPERATURE PROTECTION OF MEDIUM MOTORS NOT
MEETING THE DEFINITION OF “THERMALLY PROTECTED”.........................12-29
12.57.1 Type 1—Winding Running and Locked Rotor Overtemperature
Protection..12-29
12.57.2 Type 2—Winding Running Overtemperature Protection........................12-29
12.57.3 Type 3—Winding Overtemperature Protection, Nonspecific Type........12-29
12.58 EFFICIENCY...12-29
12.58.1 Determination of Motor Efficiency and Losses.................................12-29
12.58.2 Efficiency of Polyphase Squirrel-Cage Medium Motors with
Continuous Ratings..12-30
12.59 EFFICIENCY LEVELS OF ENERGY EFFICIENT POLYPHASE
SQUIRREL-CAGE RANDOM WOUND INDUCTION MOTORS......................12-31

© 2014 National Electrical Manufacturers Association
Section II SMALL (FRACTIONAL) AND MEDIUM (INTEGRAL) MACHINES
Part 12—TESTS AND PERFORMANCE—DC SMALL AND MEDIUM MOTORS

12.0 SCOPE .. 12-52
12.65 TEST METHODS ... 12-52
12.66 TEST POWER SUPPLY .. 12-52
12.66.1 Small Motors .. 12-52
12.66.2 Medium Motors ... 12-52
12.67 TEMPERATURE RISE .. 12-54
12.67.1 Direct-Current Small Motors ... 12-54
12.67.2 Continuous-Time-Rated Direct-Current Medium Motors .. 12-54
12.67.3 Short-Time-Rated Direct-Current Medium Motors .. 12-55
12.67.4 Temperature Rise for Ambients Higher than 40°C ... 12-55
12.67.5 Temperature Rise for Air-Cooled Machines for Ambients Lower than 40°C,
but Not Below 0°C ... 12-56

12.68 VARIATION FROM RATED VOLTAGE ... 12-57
12.69 VARIATION IN SPEED DUE TO LOAD .. 12-57
12.69.1 Straight-Shunt-Wound, Stabilized-Shunt-Wound, and
Permanent-Magnet Direct-Current Motors .. 12-57
12.69.2 Compound-Wound Direct-Current Motors ... 12-57

12.70 VARIATION IN BASE SPEED DUE TO HEATING ... 12-57
12.70.1 Speed Variation with Temperature ... 12-57
12.70.2 Resistance Variation with Temperature ... 12-58

12.71 VARIATION FROM RATED SPEED .. 12-58
12.72 MOMENTARY OVERLOAD CAPACITY .. 12-58

© 2014 National Electrical Manufacturers Association
Section II SMALL (FRACTIONAL) AND MEDIUM (INTEGRAL) MACHINES
Part 13—FRAME ASSIGNMENTS FOR ALTERNATING CURRENT INTEGRAL HORSEPOWER INDUCTION MOTORS

13.0 SCOPE ...13-1

13.1 FRAME DESIGNATIONS FOR SINGLE-PHASE DESIGN L, HORIZONTAL, AND VERTICAL MOTORS, 60 Hertz, CLASS B INSULATION SYSTEM, OPEN TYPE, 1.15 SERVICE FACTOR, 230 Volts and Less ..13-1

13.2 FRAME DESIGNATIONS FOR POLYPHASE, SQUIRREL-CAGE, DESIGNS A, B, AND E, HORIZONTAL AND VERTICAL MOTORS, 60 Hertz, CLASS B INSULATION SYSTEM, OPEN TYPE, 1.15 SERVICE FACTOR, 575 Volts and Less ..13-2

13.3 FRAME DESIGNATIONS FOR POLYPHASE, SQUIRREL-CAGE, DESIGNS A, B, ND E, HORIZONTAL AND VERTICAL MOTORS, 60 Hertz, CLASS B INSULATION SYSTEM, TOTALLY ENCLOSED FAN-COOLED TYPE, 1.0 SERVICE FACTOR, 575 Volts and Less ..13-3

13.4 FRAME DESIGNATIONS FOR POLYPHASE, SQUIRREL-CAGE, DESIGN C, HORIZONTAL AND VERTICAL MOTORS, 60 Hertz, CLASS B INSULATION SYSTEM, OPEN TYPE, 1.15 SERVICE FACTOR, 575 Volts and Less ..13-4

13.5 FRAME DESIGNATIONS FOR POLYPHASE, SQUIRREL-CAGE, DESIGN C, HORIZONTAL AND VERTICAL MOTORS, 60 Hertz, CLASS B INSULATION SYSTEM, TOTALLY ENCLOSED FAN-COOLED TYPE, 1.0 SERVICE FACTOR, 575 Volts and Less ..13-5

SECTION II SMALL (FRACTIONAL) AND MEDIUM (INTEGRAL MACHINES)
Part 14—APPLICATION DATA—AC AND DC SMALL AND MEDIUM MACHINES

14.0 SCOPE ...14-1

14.1 PROPER SELECTION OF APPARATUS ..14-1

14.2 USUAL SERVICE CONDITIONS ..14-2

14.3 UNUSUAL SERVICE CONDITIONS ..14-2

14.4 TEMPERATURE RISE ...14-3

14.4.1 Motors with Class A or Class B Insulation Systems ..14-3

14.4.2 Motors with Service Factor ..14-3

14.4.3 Temperature Rise at Sea Level ..14-3
Part 14—APPLICATION DATA—AC SMALL AND MEDIUM MOTORS

SECTION II SMALL (FRACTIONAL) AND MEDIUM (INTEGRAL) MACHINES

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>14.0</td>
</tr>
<tr>
<td>14.30</td>
</tr>
<tr>
<td>14.30.1</td>
</tr>
<tr>
<td>14.30.2</td>
</tr>
<tr>
<td>14.30.3</td>
</tr>
<tr>
<td>14.30.4</td>
</tr>
<tr>
<td>14.30.5</td>
</tr>
<tr>
<td>14.30.6</td>
</tr>
<tr>
<td>14.30.7</td>
</tr>
<tr>
<td>14.30.8</td>
</tr>
<tr>
<td>14.31</td>
</tr>
<tr>
<td>14.32</td>
</tr>
<tr>
<td>14.32.1</td>
</tr>
<tr>
<td>14.32.2</td>
</tr>
<tr>
<td>14.33</td>
</tr>
<tr>
<td>14.34</td>
</tr>
<tr>
<td>14.34.1</td>
</tr>
<tr>
<td>14.34.2</td>
</tr>
<tr>
<td>14.34.3</td>
</tr>
<tr>
<td>14.34.4</td>
</tr>
<tr>
<td>14.34.5</td>
</tr>
<tr>
<td>14.35</td>
</tr>
<tr>
<td>14.35.1</td>
</tr>
<tr>
<td>14.35.2</td>
</tr>
<tr>
<td>14.35.3</td>
</tr>
<tr>
<td>14.36</td>
</tr>
<tr>
<td>14.36.1</td>
</tr>
<tr>
<td>14.36.2</td>
</tr>
<tr>
<td>14.36.3</td>
</tr>
<tr>
<td>14.36.4</td>
</tr>
<tr>
<td>14.36.5</td>
</tr>
<tr>
<td>14.37</td>
</tr>
<tr>
<td>14.37.1</td>
</tr>
<tr>
<td>14.37.2</td>
</tr>
</tbody>
</table>
Part 14—APPLICATION DATA—DC SMALL AND MEDIUM MOTORS

14.0 SCOPE .. 14-21
14.60 OPERATION OF SMALL MOTORS ON RECTIFIED ALTERNATING CURRENT .. 14-21
 14.60.1 General .. 14-21
 14.60.2 Form Factor ... 14-21
14.61 OPERATION OF DIRECT-CURRENT MEDIUM MOTORS ON RECTIFIED ALTERNATING CURRENT .. 14-22
14.62 ARMATURE CURRENT RIPPLE .. 14-23
14.63 OPERATION ON A VARIABLE-VOLTAGE POWER SUPPLY 14-23
14.64 SHUNT FIELD HEATING AT STANDSTILL .. 14-24
14.65 BEARING CURRENTS ... 14-24
14.66 EFFECTS OF 50-HERTZ ALTERNATING-CURRENT POWER FREQUENCY .. 14-24
14.67 APPLICATION OF OVERHUNG LOADS TO MOTOR SHAFTS 14-25
 14.67.1 Limitations ... 14-25
 14.67.2 V-Belt Drives .. 14-26
 14.67.3 Applications Other Than V-Belts ... 14-27
 14.67.4 General .. 14-27
14.68 RATE OF CHANGE OF ARMATURE CURRENT .. 14-28
18.69.1 Horsepower Ratings ... 18-30
18.69.2 Speed Ratings .. 18-30

TESTS AND PERFORMANCE .. 18-30

18.70 TEMPERATURE RISE .. 18-30
18.71 BASIS OF HORSEPOWER RATINGS .. 18-30
18.72 TORQUE CHARACTERISTICS ... 18-30
18.73 HIGH-POTENTIAL TESTS ... 18-31
18.74 VARIATIONS FROM RATED VOLTAGE AND RATED FREQUENCY 18-31
18.75 DIRECTION OF ROTATION .. 18-31

MANUFACTURING .. 18-31

18.76 GENERAL MECHANICAL FEATURES .. 18-31
18.77 DIMENSIONS FOR SUMP PUMP MOTORS, TYPE K ... 18-31
18.78 FRAME NUMBER AND FRAME SUFFIX LETTER .. 18-31

SMALL MOTORS FOR GASOLINE DISPENSING PUMPS .. 18-33
18.79 CLASSIFICATION ACCORDING TO ELECTRICAL TYPE 18-33

RATINGS .. 18-33

18.80 VOLTAGE RATINGS ... 18-33
18.80.1 Single-Phase Motors ... 18-33
18.80.2 Polyphase Induction Motors .. 18-33
18.81 FREQUENCIES ... 18-33
18.82 HORSEPOWER AND SPEED RATINGS ... 18-32
18.82.1 Horsepower Ratings ... 18-32
18.82.2 Speed Ratings .. 18-33

TESTS AND PERFORMANCE .. 18-33

18.83 TEMPERATURE RISE ... 18-33
18.84 BASIS OF HORSEPOWER RATINGS ... 18-34
18.85 LOCKED-ROTOR TORQUE .. 18-34
18.86 LOCKED-ROTOR CURRENT .. 18-34
18.87 HIGH-POTENTIAL TEST ... 18-35
18.88 VARIATIONS FROM RATED VOLTAGE AND RATED FREQUENCY 18-35
18.89 DIRECTION OF ROTATION .. 18-35

MANUFACTURING .. 18-35

18.90 GENERAL MECHANICAL FEATURES .. 18-35
18.91 FRAME NUMBER AND FRAME SUFFIX LETTER .. 18-35
18.92 DIMENSIONS FOR GASOLINE DISPENSING PUMP MOTORS, TYPE G 18-36

SMALL MOTORS FOR OIL BURNERS ... 18-37
18.93 CLASSIFICATION ACCORDING TO ELECTRICAL TYPE 18-37

RATINGS .. 18-37

18.94 VOLTAGE RATINGS ... 18-37
18.95 FREQUENCIES ... 18-37
18.96 HORSEPOWER AND SPEED RATINGS ... 18-37
18.96.1 Horsepower Ratings ... 18-37
18.96.2 Speed Ratings .. 18-37

TESTS AND PERFORMANCE .. 18-37

18.97 TEMPERATURE RISE ... 18-37
18.98 BASIS OF HORSEPOWER RATING ... 18-38
18.99 LOCKED-ROTOR CHARACTERISTICS .. 18-38
18.100 HIGH-POTENTIAL TEST ... 18-38
18.101 VARIATIONS FROM RATED VOLTAGE AND RATED FREQUENCY 18-38
18.102 DIRECTION OF ROTATION .. 18-38

MANUFACTURING .. 18-38

18.103 GENERAL MECHANICAL FEATURES .. 18-38
18.104 DIMENSIONS FOR FACE-MOUNTING MOTORS FOR OIL-
BURNERS, TYPES M AND N ... 18-39
18.104.1 Dimensions ... 18-39
18.105 TOLERANCES ... 18-39
18.106 FRAME NUMBER AND FRAME SUFFIX LETTER 18-39
 18.106.1 Suffix Letter M ... 18-39
 18.106.2 Suffix Letter N ... 18-40
SMALL MOTORS FOR HOME LAUNDRY EQUIPMENT 18-41
18.107 CLASSIFICATION ACCORDING TO ELECTRICAL TYPE .. 18-41
RATINGS ... 18-41
 18.108 VOLTAGE RATINGS ... 18-41
 18.109 FREQUENCIES ... 18-41
18.110 HORSEPOWER AND SPEED RATINGS 18-41
 18.110.1 Horsepower Ratings .. 18-41
 18.110.2 Speed Ratings .. 18-41
18.111 NAMEPLATE MARKING ... 18-41
TESTS AND PERFORMANCE .. 18-42
 18.112 TEMPERATURE RISE ... 18-42
 18.113 BASIS OF HORSEPOWER RATING 18-42
 18.114 MAXIMUM LOCKED-ROTOR CURRENT 18-42
 18.115 HIGH-POTENTIAL TEST .. 18-42
 18.116 VARIATIONS FROM RATED VOLTAGE AND RATED FREQUENCY 18-42
MANUFACTURING .. 18-42
 18.117 GENERAL MECHANICAL FEATURES 18-42
 18.118 DIMENSIONS FOR MOTORS FOR HOME LAUNDRY EQUIPMENT 18-43
MOTORS AND JET PUMPS ... 18-44
 18.119 CLASSIFICATION ACCORDING TO ELECTRICAL TYPE 18-44
RATINGS ... 18-44
 18.120 VOLTAGE RATINGS ... 18-44
 18.120.1 Single-Phase Motors .. 18-44
 18.120.2 Polyphase Induction Motors 18-44
 18.121 FREQUENCIES ... 18-44
 18.122 HORSEPOWER, SPEED, AND SERVICE FACTOR RATINGS ... 18-44
TEST AND PERFORMANCE .. 18-45
 18.123 TEMPERATURE RISE ... 18-45
 18.124 BASIS OF HORSEPOWER RATING 18-45
 18.125 TORQUE CHARACTERISTICS 18-45
 18.126 MAXIMUM LOCKED-ROTOR CURRENT 18-45
 18.127 HIGH-POTENTIAL TEST .. 18-45
 18.128 VARIATIONS FROM RATED VOLTAGE AND RATED FREQUENCY 18-45
 18.129 DIRECTION OF ROTATION .. 18-45
MANUFACTURING .. 18-45
 18.130 GENERAL MECHANICAL FEATURES 18-45
 18.131 DIMENSION FOR FACE-MOUNTED MOTORS FOR JET PUMPS 18-46
 18.132 FRAME NUMBER AND FRAME SUFFIX LETTER 18-47
SMALL MOTORS FOR COOLANT PUMPS 18-48
 18.133 CLASSIFICATION ACCORDING TO ELECTRICAL TYPE 18-48
RATINGS ... 18-48
 18.134 VOLTAGE RATINGS ... 18-48
 18.134.1 Single-Phase Motors .. 18-48
 18.134.2 Polyphase Induction Motors 18-48
 18.134.3 Direct-current Motors .. 18-48
 18.135 FREQUENCIES ... 18-48
 18.136 HORSEPOWER AND SPEED RATINGS ... 18-49
TESTS AND PERFORMANCE .. 18-50
 18.137 TEMPERATURE RISE ... 18-50
 18.138 BASIS OF HORSEPOWER RATING ... 18-50

© 2014 National Electrical Manufacturers Association
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>18.139 Torque Characteristics</td>
<td>18-50</td>
</tr>
<tr>
<td>18.140 Maximum Locked-Rotor Current</td>
<td>18-50</td>
</tr>
<tr>
<td>18.141 High-Potential Test</td>
<td>18-50</td>
</tr>
<tr>
<td>18.142 Variations from Rated Voltage and Rated Frequency</td>
<td>18-50</td>
</tr>
<tr>
<td>18.143 Direction of Rotation</td>
<td>18-50</td>
</tr>
<tr>
<td>Manufacturing</td>
<td>18-51</td>
</tr>
<tr>
<td>18.144 General Mechanical Features</td>
<td>18-51</td>
</tr>
<tr>
<td>Submersible Motors for Deep Well Pumps—4-Inch</td>
<td>18-52</td>
</tr>
<tr>
<td>18.145 Classification to Electrical Type</td>
<td>18-52</td>
</tr>
<tr>
<td>Ratings</td>
<td>18-52</td>
</tr>
<tr>
<td>18.146 Voltage Ratings</td>
<td>18-52</td>
</tr>
<tr>
<td>18.146.1 Single-Phase Motors</td>
<td>18-52</td>
</tr>
<tr>
<td>18.146.2 Polyphase Induction Motors</td>
<td>18-52</td>
</tr>
<tr>
<td>18.147 Frequencies</td>
<td>18-52</td>
</tr>
<tr>
<td>18.148 Horsepower and Speed Ratings</td>
<td>18-52</td>
</tr>
<tr>
<td>18.148.1 Horsepower Ratings</td>
<td>18-52</td>
</tr>
<tr>
<td>18.148.2 Speed Ratings</td>
<td>18-52</td>
</tr>
<tr>
<td>Tests and Performance</td>
<td>18-53</td>
</tr>
<tr>
<td>18.149 Basis of Horsepower Rating</td>
<td>18-53</td>
</tr>
<tr>
<td>18.150 Locked-Rotor Current</td>
<td>18-53</td>
</tr>
<tr>
<td>18.150.1 Single-Phase Small Motors</td>
<td>18-53</td>
</tr>
<tr>
<td>18.150.2 Single-Phase Medium Motors</td>
<td>18-53</td>
</tr>
<tr>
<td>18.152.3 Three-Phase Medium Motors</td>
<td>18-53</td>
</tr>
<tr>
<td>18.151 High-Potential Test</td>
<td>18-53</td>
</tr>
<tr>
<td>18.152 Variation from Rated Voltage at Control Box</td>
<td>18-53</td>
</tr>
<tr>
<td>18.153 Variation from Rated Frequency</td>
<td>18-53</td>
</tr>
<tr>
<td>18.154 Direction of Rotation</td>
<td>18-53</td>
</tr>
<tr>
<td>18.155 Thrust Capacity</td>
<td>18-53</td>
</tr>
<tr>
<td>Manufacturing</td>
<td>18-53</td>
</tr>
<tr>
<td>18.156 Terminal Lead Markings</td>
<td>18-53</td>
</tr>
<tr>
<td>18.157 General Mechanical Features</td>
<td>18-54</td>
</tr>
<tr>
<td>Submersible Motors for Deep Well Pumps—6-Inch</td>
<td>18-55</td>
</tr>
<tr>
<td>18.158 Classification According to Electrical Type</td>
<td>18-55</td>
</tr>
<tr>
<td>Ratings</td>
<td>18-55</td>
</tr>
<tr>
<td>18.159 Voltage Ratings</td>
<td>18-55</td>
</tr>
<tr>
<td>18.159.1 Single-Phase Motors</td>
<td>18-55</td>
</tr>
<tr>
<td>18.159.2 Polyphase Induction Motors</td>
<td>18-55</td>
</tr>
<tr>
<td>18.160 Frequencies</td>
<td>18-55</td>
</tr>
<tr>
<td>18.161 Horsepower and Speed Ratings</td>
<td>18-55</td>
</tr>
<tr>
<td>18.161.1 Horsepower Ratings</td>
<td>18-55</td>
</tr>
<tr>
<td>Tests and Performance</td>
<td>18-55</td>
</tr>
<tr>
<td>18.162 Basis for Horsepower Rating</td>
<td>18-55</td>
</tr>
<tr>
<td>18.163 Locked-Rotor Current</td>
<td>18-55</td>
</tr>
<tr>
<td>18.164 High-Potential Tests</td>
<td>18-56</td>
</tr>
<tr>
<td>18.165 Variation from Rated Voltage at Control Box</td>
<td>18-56</td>
</tr>
<tr>
<td>18.166 Variation from Rated Frequency</td>
<td>18-56</td>
</tr>
<tr>
<td>18.167 Direction of Rotation</td>
<td>18-56</td>
</tr>
<tr>
<td>18.168 Thrust Capacity</td>
<td>18-56</td>
</tr>
<tr>
<td>Manufacturing</td>
<td>18-56</td>
</tr>
<tr>
<td>18.169 Terminal Lead Markings</td>
<td>18-56</td>
</tr>
<tr>
<td>18.170 General Mechanical Features</td>
<td>18-57</td>
</tr>
<tr>
<td>Submersible Motors for Deep Well Pumps—8-Inch</td>
<td>18-58</td>
</tr>
<tr>
<td>18.171 Classification According to Electrical Type</td>
<td>18-58</td>
</tr>
<tr>
<td>Ratings</td>
<td>18-58</td>
</tr>
<tr>
<td>18.172 Voltage Ratings</td>
<td>18-58</td>
</tr>
<tr>
<td>18.173 Frequencies</td>
<td>18-58</td>
</tr>
</tbody>
</table>

© 2014 National Electrical Manufacturers Association
18.174 HORSEPOWER AND SPEED RATINGS ... 18-58
 18.174.1 Horsepower Ratings .. 18-58
 18.174.2 Speed Ratings .. 18-58

TESTS AND PERFORMANCE .. 18-58
18.175 LOCKED-ROTOR CURRENT .. 18-58
18.176 HIGH-POTENTIAL TEST... 18-58
18.177 VARIATION FROM RATED VOLTAGE AT CONTROL BOX 18-59
18.178 VARIATION FROM RATED FREQUENCY .. 18-59
18.179 DIRECTION OF ROTATION ... 18-59
18.180 THRUST CAPACITY ... 18-59
18.181 GENERAL MECHANICAL FEATURES .. 18-60

MEDIUM DC ELEVATOR MOTORS ... 18-61
18.182 CLASSIFICATION ACCORDING TO TYPE .. 18-61
 18.182.1 Class DH .. 18-61
 18.182.2 Class DL ... 18-61

RATINGS ... 18-61
18.183 VOLTAGE RATINGS ... 18-61
18.184 HORSEPOWER AND SPEED RATINGS ... 18-61
 18.184.1 Class DH ... 18-61
 18.184.2 Class DL .. 18-61
18.185 BASIS OF RATING .. 18-62
 18.185.1 Class DH .. 18-62
 18.185.2 Class DL .. 18-62

18.186 NAMEPLATE MARKINGS .. 18-62

TESTS AND PERFORMANCE ... 18-62
18.187 ACCELERATION AND DECELERATION CAPACITY 18-62
18.188 VARIATION IN SPEED DUE TO LOAD .. 18-62
 18.188.1 Class DH .. 18-62
 18.188.2 Class DL .. 18-62
18.189 VARIATION FROM RATED SPEED .. 18-62
18.190 VARIATION IN SPEED DUE TO HEATING ... 18-62
 18.190.1 Open-Loop Control System .. 18-62
 18.190.2 Closed-Loop Control System .. 18-63
18.191 HIGH-POTENTIAL TEST ... 18-63
18.192 TEMPERATURE RISE .. 18-63

MOTOR-GENERATOR SETS FOR DC ELEVATOR MOTORS 18-64
RATINGS ... 18-64
18.193 BASIS OF RATING .. 18-64
 18.193.1 Time Rating ... 18-64
 18.193.2 Relation to Elevator Motor .. 18-64
18.194 GENERATOR VOLTAGE RATINGS ... 18-64
 18.194.1 Value ... 18-64
 18.194.2 Maximum Value .. 18-64

TESTS AND PERFORMANCE ... 18-64
18.195 VARIATION IN VOLTAGE DUE TO HEATING 18-64
 18.195.1 Open-Loop Control System .. 18-64
 18.195.2 Closed-Loop Control System .. 18-64
18.196 OVERLOAD .. 18-64
18.197 HIGH-POTENTIAL TEST ... 18-64
18.198 VARIATION FROM RATED VOLTAGE ... 18-65
18.199 VARIATION FROM RATED FREQUENCY .. 18-65
18.200 COMBINED VARIATION OF VOLTAGE AND FREQUENCY 18-65
18.201 TEMPERATURE RISE .. 18-65
 18.201.1 Induction Motors ... 18-65
 18.201.2 Direct-Current Adjustable-Voltage Generators 18-65

MEDIUM AC POLYPHASE ELEVATOR MOTORS ... 18-66
18.236 LETTERING FOR DIMENSION SHEETS FOR SHELL-TYPE MOTORS .. 18-77

MEDIUM AC SQUIRREL-CAGE INDUCTION MOTORS FOR VERTICAL TURBINE PUMP APPLICATIONS ... 18-78

18.237 DIMENSION FOR TYPE VP VERTICAL SOLID-SHAFT, SINGLE-PHASE AND POLYPHASE, DIRECT CONNECTED SQUIRREL-CAGE INDUCTION MOTORS FOR VERTICAL TURBINE PUMP APPLICATIONS .. 18-79

18.238 DIMENSIONS FOR TYPE P AND PH ALTERNATING-CURRENT SQUIRREL-CAGE VERTICAL HOLLOW-SHAFT MOTORS FOR VERTICAL TURBINE PUMP APPLICATIONS .. 18-81
18.238.1 Base Dimensions .. 18-81
18.238.2 Coupling Dimensions ... 18-82

MEDIUM AC SQUIRREL-CAGE INDUCTION MOTORS FOR CLOSE-COUPLED PUMPS .. 18-83

18.239 VOLTAGE RATINGS .. 18-83
18.240 FREQUENCIES ... 18-83
18.241 NAMEPLATE MARKINGS .. 18-83
18.242 NAMEPLATE RATINGS .. 18-83

TESTS AND PERFORMANCE .. 18-83
18.243 TEMPERATURE RISE .. 18-83
18.244 TORQUES .. 18-83
18.245 LOCKED-ROTOR CURRENTS .. 18-83
18.246 HIGH-POTENTIAL TEST .. 18-83
18.247 VARIATIONS FROM RATED VOLTAGE AND RATED FREQUENCY .. 18-83
18.248 BALANCE OF MOTORS ... 18-83

MANUFACTURING .. 18-83
18.249 FRAME ASSIGNMENTS ... 18-83
18.250 DIMENSIONS FOR TYPE JM AND JP ALTERNATING-CURRENT FACE-MOUNTING CLOSE-COUPLED PUMP MOTORS HAVING ANTIFRiction BEARINGS .. 18-84

18.251 DIMENSIONS FOR TYPE LP AND LPH VERTICAL SOLID-SHAFT SINGLE-PHASE AND POLYPHASE DIRECT-CONNECTED SQUIRREL-
CAGE INDUCTION MOTORS (HAVING THE THRUST BEARING IN THE MOTOR) FOR CHEMICAL PROCESS IN-LINE PUMP APPLICATIONS ... 18-89
18.252 DIMENSIONS FOR TYPE HP AND HPH VERTICAL SOLID-SHAFT SINGLE-PHASE AND POLYPHASE DIRECT-CONNECTED SQUIRREL-CAGE INDUCTION MOTORS FOR PROCESS AND IN-LINE PUMP APPLICATIONS ... 18-91

DC PERMANENT-MAGNET TACHOMETER GENERATORS FOR CONTROL SYSTEMS .. 18-93

18.253 CLASSIFICATION ACCORDING TO ELECTRICAL TYPE .. 18-93
18.254 CLASSIFICATION ACCORDING TO OUTPUT VOLTAGE RATING ... 18-93

RATINGS .. 18-93
18.255 OUTPUT VOLTAGE RATINGS ... 18-93
18.256 CURRENT RATING ... 18-93
18.257 SPEED RATINGS ... 18-93

TESTS AND PERFORMANCE .. 18-93
18.258 TEST METHODS ... 18-93
18.259 TEMPERATURE RISE .. 18-93
18.260 VARIATION FROM RATED OUTPUT VOLTAGE ... 18-94
18.260.1 High-Voltage Type .. 18-94
18.260.2 Low-Voltage Type .. 18-94

18.261 HIGH-POTENTIAL TESTS ... 18-94
18.261.1 Test ... 18-94
18.261.2 Application ... 18-94

© 2014 National Electrical Manufacturers Association
20.21 Efficiency of Polyphase Squirrel-Cage Large Motors with Continuous Ratings 20-15

20.9 Code Letters (for Locked-Rotor KVA) .. 20-6

20.10 Torque ... 20-7

20.10.1 Standard Torque .. 20-7

20.10.2 High Torque ... 20-7

20.10.3 Motor Torques When Customer Specifies a Custom Load Curve 20-8

20.10.4 Motor With 4.5 pu and Lower Locked-Rotor Current 20-8

20.11 Load WK² for Polyphase Squirrel-Case Induction Motors 20-8

20.12 Number of Starts .. 20-9

20.12.1 Starting Capability ... 20-9

20.12.2 Additional Starts ... 20-9

20.12.3 Information Plate ... 20-9

20.13 Overspeeds .. 20-9

20.14 Variations from Rated Voltage and Rated Frequency 20-11

20.14.1 Running ... 20-11

20.14.2 Starting ... 20-11

20.15 Operation of Induction Machines from Variable-Frequency or Variable-Voltage Power Supplies, or Both ... 20-11

20.16 Tests .. 20-12

20.16.1 Test Methods .. 20-12

20.16.2 Routine Tests on Machines Completely Assembled in Factory 20-12

20.16.3 Routine Tests on Machines Not Completely Assembled in Factory 20-12

20.17 High-Potential Tests .. 20-12

20.17.1 Safety Precautions and Test Procedure .. 20-12

20.17.2 Test Voltage—Primary Windings ... 20-12

20.17.3 Test Voltage—Secondary Windings of Wound Rotors 20-12

20.18 Machine with Sealed Windings—Conformance Tests 20-13

20.18.1 Test for Stator Which Can be Submerged .. 20-13

20.18.2 Test for Stator Which Cannot be Submerged .. 20-13

20.19 Machine Sound .. 20-13

20.20 Report of Test Form for Induction Machines .. 20-14

20.21 Efficiency ... 20-14

20.21.1 Efficiency of Polyphase Squirrel-Cage Large Motors with Continuous Ratings 20-15

20.21.2 Efficiency Levels of Energy Efficient Polyphase Squirrel-Cage Random Wound Large Induction Motors .. 20-15

Table 20-A .. 20-15

20.21.C Efficiency Levels of Premium Efficiency Large Electric Motors 20-16

20.21.C.1 60 Hz Motors Rated 600 Volts or Less (Random Wound) 20-16

Table 20-B .. 20-16

20.21.C.2 60 Hz Motors Rated 5000 Volts or Less (Form Wound) 20-17

Table 20-C .. 20-17

20.21.C.3 50 Hz Motors Rated 600 Volts or Less (Random Wound) 20-18

Table 20-D .. 20-18

20.21.C.4 60 Hz Motors Rated 600 Volts or Less (Random Wound) 20-18

Table 20-E .. 20-19

20.22 Mechanical Vibration ... 20-22

20.23 Reed Frequency of Vertical Machines .. 20-23
21.2 BASIS OF RATING .. 21-1
21.3 HORSEPOWER AND SPEED RATINGS 21-2
21.4 POWER FACTOR ... 21-2
21.5 VOLTAGE RATINGS ... 21-2
21.5.1 Voltage Ratings ... 21-2
21.5.2 Preferred Motor Output/Voltage Rating 21-3
21.6 FREQUENCIES .. 21-3
21.7 EXCITATION VOLTAGE ... 21-3
21.8 SERVICE FACTOR .. 21-3
21.8.1 Service Factor of 1.0 ... 21-3
21.8.2 Service Factor of 1.15 ... 21-3
21.8.3 Application of Motor with 1.15 Service Factor 21-3
21.9 TYPICAL KW RATINGS OF EXCITERS FOR 60-HERTZ
SYNCHRONOUS MOTORS ... 21-4
21.10 TEMPERATURE RISE—SYNCHRONOUS MOTORS 21-9
21.10.1 Machines with 1.0 Service Factor at Rated Load 21-9
21.10.2 Machines with 1.15 Service Factor at Service Factor Load 21-9
21.10.3 Temperature Rise for Ambients Higher than 40°C 21-10
21.10.4 Temperature Rise for Altitudes Greater than 3300 Feet (1000 Meters) 21-10
21.10.5 Temperature Rise for Air-Cooled Motors for Ambients Lower than 40°C,
but Not Below 0°C .. 21-10
21.11 TORQUES ... 21-11
21.11.1 General ... 21-11
21.11.2 Motor Torques When Customer Supplies Load Curve 21-11
21.12 NORMAL WK² OF LOAD .. 21-11
21.13 NUMBER OF STARTS .. 21-12
21.13.1 Starting Capability .. 21-12
21.13.2 Additional Starts .. 21-12
21.13.3 Information Plate ... 21-12
21.14 EFFICIENCY ... 21-12
21.15 OVERSPEED ... 21-13
21.16 OPERATION AT OTHER THAN RATED POWER FACTORS 21-13
21.16.1 Operation of a 0.8 Power-factor Motor at 1.0 Power-factor 21-13
21.16.2 Operation of a 1.0 Power-factor Motor at 0.8 Power-factor 21-14
21.17 VARIATIONS FROM RATED VOLTAGE AND RATED FREQUENCY 21-14
21.17.1 Running ... 21-14
21.17.2 Starting ... 21-14
21.18 OPERATION OF SYNCHRONOUS MOTORS FROM VARIABLE-
FREQUENCY POWER SUPPLIES ... 21-14
21.19 SPECIFICATION FORM FOR SLIP-RING SYNCHRONOUS MOTORS 21-18
21.20 SPECIFICATION FORM FOR BRUSHLESS SYNCHRONOUS MOTORS 21-19
21.21 ROUTINE TESTS .. 21-20
21.21.1 Motors Not Completely Assembled in the Factory 21-20
21.21.2 Motors Completely Assembled in the Factory 21-20
21.22 HIGH-POTENTIAL TESTS ... 21-20
21.22.1 Safety Precautions and Test Procedure 21-20
21.22.2 Test Voltage—Armature Windings 21-20
21.22.3 Test Voltage—Field Windings, Motors with Slip Rings .. 21-20
21.22.4 Test Voltage—Assembled Brushless Motor Field
Windings and Exciter Armature Winding 21-20
21.22.5 Test Voltage—Brushless Exciter Field Winding 21-20
21.23 MACHINE SOUND ... 21-21
21.24 MECHANICAL VIBRATION ... 21-21
21.25 NAMEPLATE MARKING .. 21-21
Section IV PERFORMANCE STANDARDS APPLYING TO ALL MACHINES

Part 30—APPLICATION CONSIDERATIONS FOR CONSTANT SPEED MOTORS

USED ON A SINUSOIDAL BUS WITH HARMONIC CONTENT AND GENERAL PURPOSE MOTORS USED WITH ADJUSTABLE-VOLTAGE OR ADJUSTABLE-FREQUENCY CONTROLS OR BOTH

30.0 SCOPE .. 30-1
30.1 APPLICATION CONSIDERATIONS FOR CONSTANT SPEED MOTORS

USED ON A SINUSOIDAL BUS WITH HARMONIC CONTENT .. 30-1
30.1.1 Efficiency .. 30-1
30.1.2 Derating for Harmonic Content .. 30-1
30.1.3 Power Factor Correction .. 30-2
30.2 GENERAL PURPOSE MOTORS USED WITH ADJUSTABLE-VOLTAGE OR ADJUSTABLE-FREQUENCY CONTROLS OR BOTH ..30-2
30.2.1 Definitions ... 30-2
30.2.2 Application Considerations ...30-5

Section IV PERFORMANCE STANDARDS APPLYING TO ALL MACHINES
Part 31—DEFINITE-PURPOSE INVERTER-FED POLYPHASE MOTORS
31.0 SCOPE ...31-1
31.1 SERVICE CONDITIONS... 31-1
31.1.1 General ... 31-1
31.1.2 Usual Service Conditions ...31-1
31.1.3 Unusual Service Conditions ...31-1
31.1.4 Operation in Hazardous (Classified) Locations 31-2
31.2 DIMENSIONS, TOLERANCES, AND MOUNTING FOR
FRAME DESIGNATIONS ..31-2
31.3 RATING ...31-3
31.3.1 Basis of Rating .. 31-3
31.3.2 Base Horsepower and Speed Ratings ...31-3
31.3.3 Speed Range ... 31-4
31.3.4 Voltage ... 31-4
31.3.5 Number of Phases .. 31-4
31.3.6 Direction of Rotation ... 31-5
31.3.7 Service Factor ... 31-5
31.3.8 Duty .. 31-5
31.4 PERFORMANCE ..31-5
31.4.1 Temperature Rise ... 31-5
31.4.2 Torque ... 31-9
31.4.3 Operating Limitations ... 31-9
31.4.4 Insulation Considerations .. 31-10
31.4.5 Resonances, Sound, Vibration .. 31-12
31.4.6 Bearing Lubrication at Low and High Speeds 31-12
31.5 NAMEPLATE MARKING ...31-13
31.5.1 Variable Torque Applications ..31-13
31.5.2 Other Applications ...31-13
31.6 TESTS ...31-13
31.6.1 Test Method .. 31-13
31.6.2 Routine Tests .. 31-14
31.6.3 Performance Tests ... 31-14
31.7 ACCESSORY MOUNTING ... 31-14

Section IV PERFORMANCE STANDARDS APPLYING TO ALL MACHINES
Part 32—SYNCHRONOUS GENERATORS (EXCLUSIVE OF GENERATORS
COVERED BY ANSI STANDARDS C50.12, C50.13, C50.14,
AND C50.15 ABOVE 5000 kVA) RATINGS
32.0 SCOPE ...32-1
32.1 BASIS OF RATING .. 32-1
32.2 KILOVOLT-AMPERE (KVA) AND (KW) RATINGS32-1
32.3 SPEED RATINGS ... 32-1
32.4 VOLTAGE RATINGS ... 32-3
32.4.1 Voltage Ratings for 60 Hz Circuits, Volts 32-3
32.4.2 Voltage Ratings for 50 Hz Circuits, Volts 32-3
32.5 FREQUENCIES ... 32-3
32.6 TEMPERATURE RISE .. 32-3
32.6.2 Temperature Rise for Air-Cooled Machines for Ambients Lower than 40° C,
but Not Below 0° C .. 32-5
32.7 MAXIMUM MOMENTARY OVERLOADS 32-5
32.21 HIGH-POTENTIAL TESTS .. 32-17
32.21.1 Safety Precautions and Test Procedures 32-17
32.21.2 Test Voltage—Armature Windings .. 32-17
32.21.3 Test Voltage—Field Windings, Generators with Slip Rings 32-17
32.21.4 Test Voltage—Assembled Brushless Generator Field Winding and Exciter Armature Winding 32-17
32.21.5 Test Voltage—Brushless Exciter Field Winding 32-18
32.22 MACHINE SOUND SYNCHRONOUS (GENERATORS) 32-18
32.22.1 Sound Quality .. 32-18
32.22.2 Sound Measurement .. 32-18
32.23 VIBRATION ... 32-18

MANUFACTURING DATA .. 32-19
32.24 NAMEPLATE MARKING .. 32-19
32.25 SHAFT EXTENSION KEY .. 32-19
32.26 GENERATOR TERMINAL HOUSING 32-19
32.27 EMBEDDED TEMPERATURE DETECTORS 32-20

APPLICATION DATA .. 32-21
32.29 PARALLEL OPERATION .. 32-21
32.30 CALCULATION OF NATURAL FREQUENCY 32-21
32.31 TORSIONAL VIBRATION .. 32-21
32.32 MACHINES OPERATING ON AN UNGROUNDED SYSTEM 32-21
32.33 SERVICE CONDITIONS .. 32-21
32.33.1 General .. 32-21
32.33.2 Usual Service Conditions ... 32-22
32.33.3 Unusual Service Conditions .. 32-22
32.34 NEUTRAL GROUNDING ... 32-23
32.35 STAND-BY GENERATOR ... 32-23
32.36 GROUNDING MEANS FOR FIELD WIRING 32-23

Section IV PERFORMANCE STANDARDS APPLYING TO ALL MACHINES
Part 33—DEFINITE PURPOSE SYNCHRONOUS GENERATORS FOR
GENERATING SET APPLICATIONS

33.0 SCOPE .. 33-1
33.1 DEFINITIONS .. 33-1
33.1.1 Rated Output Power .. 33-1
33.1.2 Rated Speed of Rotation n ... 33-2
33.1.3 Voltage Terms ... 33-2
33.1.4 Performance Classes .. 33-4
33.2 RATINGS ... 33-5
33.2.1 Power Factor ... 33-5
33.2.2 Kilovolt-Ampere (kVA) and Kilowatt (kW) Ratings ... 33-5
33.2.3 Speed .. 33-6
33.2.4 Voltage .. 33-6
33.2.5 Frequencies .. 33-7
33.3 PERFORMANCE ... 33-7
33.3.1 Voltage and Frequency Variation ... 33-7
33.3.2 Limits of Temperature and Temperature Rise .. 33-8
33.3.3 Special Load Conditions .. 33-11
33.3.4 Power Quality .. 33-12
33.3.5 Overspeed .. 33-18
33.3.6 Machine Sound ... 33-18
33.3.7 Linear Vibration .. 33-19
33.3.8 Testing .. 33-19
33.3.9 Performance Specification Forms ... 33-22
33.4 APPLICATIONS .. 33-24
33.4.1 Service Conditions ... 33-24
33.4.2 Transient Voltage Performance ... 33-25
33.4.3 Torsional Vibration .. 33-29
33.4.4 Generator Grounding .. 33-29
33.4.5 Cyclic Irregularity ... 33-30
33.4.6 Application Criteria .. 33-30
33.5 MANUFACTURING ... 33-32
33.5.1 Nameplate Marking .. 33-32
33.5.2 Terminal Housings .. 33-33
Foreword

The standards appearing in this publication have been developed by the Motor and Generator Section and approved for publication as standards of the National Electrical Manufacturers Association. They are intended to assist users in the proper selection and application of motors and generators. These standards are revised periodically to provide for changes in user needs, advances in technology, and changing economic trends. All persons having experience in the selection, use, or manufacture of electric motors and generators are encouraged to submit recommendations that will improve the usefulness of these standards. Inquiries, comments, and proposed or recommended revisions should be submitted to the Motor and Generator Section by contacting:

Senior Technical Director, Operations
National Electrical Manufacturers Association
1300 North 17th Street, Suite 900
Rosslyn, VA 22209

The best judgment of the Motor and Generator Section on the performance and construction of motors and generators is represented in these standards. They are based upon sound engineering principles, research, and records of test and field experience. Also involved is an appreciation of the problems of manufacture, installation, and use derived from consultation with and information obtained from manufacturers, users, inspection authorities, and others having specialized experience. For machines intended for general applications, information as to user needs was determined by the individual companies through normal commercial contact with users. For some motors intended for definite applications, the organizations that participated in the development of the standards are listed at the beginning of those definite-purpose motor standards.

Practical information concerning performance, safety, test, construction, and manufacture of alternating-current and direct-current motors and generators within the product scopes defined in the applicable section or sections of this publication is provided in these standards. Although some definite-purpose motors and generators are included, the standards do not apply to machines such as generators and traction motors for railroads, motors for mining locomotives, arc-welding generators, automotive accessory and toy motors and generators, machines mounted on airborne craft, etc.

In the preparation and revision of these standards, consideration has been given to the work of other organizations whose standards are in any way related to motors and generators. Credit is hereby given to all those whose standards may have been helpful in the preparation of this volume.

NEMA MG 1-2014 is a revision of MG 1-2011. Prior to publication, the NEMA Standards and Authorized Engineering Information that appear in this publication unchanged since the preceding edition were reaffirmed by the Motor and Generator Section.

The standards or guidelines presented in a NEMA standards publication are considered technically sound at the time they are approved for publication. They are not a substitute for a product seller's or user's own judgment with respect to the particular product referenced in the standard or guideline, and NEMA does not undertake to guaranty the performance of any individual manufacturer's products by virtue of this standard or guide. Thus, NEMA expressly disclaims any responsibility for damages arising from the use, application, or reliance by others on the information contained in these standards or guidelines.

© 2014 National Electrical Manufacturers Association
This standards publication was developed by the Motors and Generator Section. Section approval of the standard does not necessarily imply that all section members voted for its approval or participated in its development. At the time it was approved, the Motors and Generator Section was composed of the following members:

Baldor Electric A Member of the ABB Group - Fort Smith, AR
Bluffton Motor Works Bluffton - IN
Brook Crompton North America - Toronto, ON
Cummins, Inc.—Minneapolis, MN

GE Industrial Solutions - Plainville, CT
Nidec Motor Corporation - Saint Louis, MO
NovaTorque, Inc. - Fremont, CA
Ram Industries—Leesport, PA
Regal-Beloit Corporation—Beloit, WI, composed of:
 Leeson Electric—Grafton, WI
 Lincoln Motors—Cleveland, OH
 Marathon Electric Manufacturing Corporation—Wausau, WI
 Electra-Gear—Union Grove, WI
Schneider Electric - Palatine, IL
SEW-Eurodrive, Inc.—Lyman, SC
Siemens Industry, Inc.—Norcross, GA
Sterling Electric, Inc.—Indianapolis, IN
TECO-Westinghouse Motor Co.—Round Rock, TX
Toshiba International Corporation—Houston, TX
WEG Electric Motor Corp.—Duluth, GA