American National Standard

For Insulators

Wet Process Porcelain and Toughened Glass—Suspension Type

Secretariat:

National Electrical Manufacturers Association

Approved: October 2012
Published: July 2013

American National Standards Institute, Inc.
NOTICE AND DISCLAIMER

The information in this publication was considered technically sound by the consensus of persons engaged in the development and approval of the document at the time it was developed. Consensus does not necessarily mean that there is unanimous agreement among every person participating in the development of this document.

American National Standards Institute (ANSI) standards and guideline publications, of which the document contained herein is one, are developed through a voluntary consensus standards development process. This process brings together volunteers and/or seeks out the views of persons who have an interest in the topic covered by this publication. While NEMA administers the process and establishes rules to promote fairness in the development of consensus, it does not write the document and it does not independently test, evaluate, or verify the accuracy or completeness of any information or the soundness of any judgments contained in its standards and guideline publications.

NEMA disclaims liability for any personal injury, property, or other damages of any nature whatsoever, whether special, indirect, consequential, or compensatory, directly or indirectly resulting from the publication, use of, application, or reliance on this document. NEMA disclaims and makes no guaranty or warranty, express or implied, as to the accuracy or completeness of any information published herein, and disclaims and makes no warranty that the information in this document will fulfill any of your particular purposes or needs. NEMA does not undertake to guarantee the performance of any individual manufacturer or seller’s products or services by virtue of this standard or guide.

In publishing and making this document available, NEMA is not undertaking to render professional or other services for or on behalf of any person or entity, nor is NEMA undertaking to perform any duty owed by any person or entity to someone else. Anyone using this document should rely on his or her own independent judgment or, as appropriate, seek the advice of a competent professional in determining the exercise of reasonable care in any given circumstances. Information and other standards on the topic covered by this publication may be available from other sources, which the user may wish to consult for additional views or information not covered by this publication.

NEMA has no power, nor does it undertake to police or enforce compliance with the contents of this document. NEMA does not certify, test, or inspect products, designs, or installations for safety or health purposes. Any certification or other statement of compliance with any health or safety–related information in this document shall not be attributable to NEMA and is solely the responsibility of the certifier or maker of the statement.
Approval of an American National Standard requires verification by ANSI that the requirements for due process, consensus, and other criteria for approval have been met by the standards developer.

Consensus is established when, in the judgment of the ANSI Board of Standards Review, substantial agreement has been reached by directly and materially affected interests. Substantial agreement means much more than a simple majority, but not necessarily unanimity. Consensus requires that all views and objections be considered, and that a concerted effort be made toward their resolution.

The use of American National Standards is completely voluntary; their existence does not in any respect preclude anyone, whether he has approved the standards or not, from manufacturing, marketing, purchasing, or using products, processes, or procedures not conforming to the standards.

The American National Standards Institute does not develop standards and will in no circumstances give an interpretation of any American National Standard. Moreover, no person shall have the right or authority to issue an interpretation of an American National Standard in the name of the American National Standards Institute. Requests for interpretations should be addressed to the secretariat or sponsor whose name appears on the title page of this standard.

Caution Notice: This American National Standard may be revised or withdrawn at any time. The procedures of the American National Standards Institute require that action be taken periodically to reaffirm, revise, or withdraw this standard. Purchasers of American National Standards may receive current information on all standards by calling or writing the American National Standards Institute.

Published by

National Electrical Manufacturers Association
1300 North 17th Street, Rosslyn, VA 22209

© Copyright 2013 by National Electrical Manufacturers Association
All rights reserved including translation into other languages, reserved under the Universal Copyright Convention, the Berne Convention for the Protection of Literary and Artistic Works, and the International and Pan American Copyright Conventions.

No part of this publication may be reproduced in any form, in an electronic retrieval system or otherwise, without the prior written permission of the publisher.

Printed in the United States of America.
<This page intentionally left blank.>
FOREWORD

(This Foreword is not part of American National Standard C29.2-2012)

This standard had its origins in one of a series of Standards issued in 1952 by the Joint Committee on Insulator Standards of the Edison Electric Institute and the National Electrical Manufacturers Association. The original 1952 standard was designated as: EEI-NEMA Standards for Wet-Process Porcelain Insulators (Suspension Type), EEI Publication Number TDJ-52, NEMA Publication Number 140-1952. Subsequent revisions have been developed by the Standards Committee on Insulators for Electric Power Lines, C29.

Suggestions for improvement of this standard will be welcome. They should be sent to:

Senior Technical Director, Operations
National Electrical Manufacturers Association
1300 North 17th Street
Rosslyn, VA 22209

This standard was processed and approved for submittal to ANSI by Accredited Standards Committee on Insulators for Electric Power Lines, C29. Committee approval of the standard does not necessarily imply that all committee members voted for approval. At the time it approved this standard, the ASC C-29 committee had the following members:

Rob Christman, Chairman
Steve Griffith, Secretary

<table>
<thead>
<tr>
<th>Organization Represented</th>
<th>Name of Representative</th>
</tr>
</thead>
<tbody>
<tr>
<td>Edison Electric Institute</td>
<td>B. Freimark</td>
</tr>
<tr>
<td></td>
<td>R. Christman</td>
</tr>
<tr>
<td></td>
<td>E. Cleckley</td>
</tr>
<tr>
<td></td>
<td>M. Garrels</td>
</tr>
<tr>
<td></td>
<td>W. Avery</td>
</tr>
<tr>
<td></td>
<td>J. Varner (alt)</td>
</tr>
<tr>
<td></td>
<td>R. Kluge (alt)</td>
</tr>
<tr>
<td></td>
<td>G. Obenchain (alt)</td>
</tr>
<tr>
<td>Institute of Electrical and Electronic Engineers</td>
<td>T. Grisham</td>
</tr>
<tr>
<td></td>
<td>J. Hildreth</td>
</tr>
<tr>
<td></td>
<td>A. Jagtiani</td>
</tr>
<tr>
<td></td>
<td>J. Kuffel</td>
</tr>
<tr>
<td></td>
<td>A. Phillips</td>
</tr>
<tr>
<td></td>
<td>E. Gnadt (alt)</td>
</tr>
<tr>
<td>National Electrical Manufacturers Association</td>
<td>P. Maloney</td>
</tr>
<tr>
<td></td>
<td>A. Baker</td>
</tr>
<tr>
<td></td>
<td>R. A. Bernstorf</td>
</tr>
<tr>
<td></td>
<td>G. Powell</td>
</tr>
<tr>
<td></td>
<td>G. A. Stewart</td>
</tr>
<tr>
<td></td>
<td>E. Kress (alt)</td>
</tr>
<tr>
<td></td>
<td>Z. Lodi (alt)</td>
</tr>
<tr>
<td></td>
<td>E. Niedospial (alt)</td>
</tr>
<tr>
<td></td>
<td>A. Schwalm (alt)</td>
</tr>
<tr>
<td>Tennessee Valley Authority</td>
<td>J. Nelson</td>
</tr>
<tr>
<td>Western Area Power Administration</td>
<td>R. Clark</td>
</tr>
</tbody>
</table>
TABLE OF CONTENTS

Page

FOREWORD.. iv

1 SCOPE .. 1

2 REFERENCED AMERICAN NATIONAL STANDARDS .. 1

3 DEFINITIONS ... 1

4 GENERAL ... 1

5 MATERIALS .. 1

5.1 Insulator Shells .. 1

5.2 Shell Surface ... 1

5.3 Metal Parts ... 2

5.4 Cotter Keys ... 2

5.4.1 Material .. 2

5.4.2 Ball-and-Socket Insulators ... 2

5.4.3 Clevis Insulators .. 2

6 DIMENSIONS AND CHARACTERISTICS ... 2

7 MARKING .. 3

8 SAMPLING, INSPECTION, AND TESTS ... 3

8.1 General .. 3

8.2 Design Tests .. 3

8.2.1 Low-Frequency Dry Flashover Test .. 3

8.2.2 Low-Frequency Wet Flashover Test ... 3

8.2.3 Critical Impulse Flashover Tests-Positive and Negative 3

8.2.4 Radio-Influence Voltage Test ... 3

8.2.5 Thermal-Mechanical Load Cycle Test ... 3

8.2.6 Thermal Shock Test ... 4

8.2.7 Residual-Strength Test .. 4

8.2.8 Impact Test .. 4

8.2.9 Cotter Key Test ... 4

8.2.10 Cement Expansion .. 4

8.3 Quality Conformance Tests .. 5

8.3.1 Visual and Dimensional Tests .. 5

8.3.2 Porosity Test .. 5

8.3.3 Galvanizing Test ... 5

8.3.4 Combined Mechanical and Electrical-Strength Tests ... 5

8.3.5 Puncture Tests .. 6

8.4 Routine Tests ... 6

8.4.1 Cold-to-Hot Thermal Shock Test .. 6

8.4.2 Hot-to-Cold Thermal Shock Test .. 6

8.4.3 Tension Proof Test ... 6

8.4.4 Flashover Test ... 6

TABLES

1 Metric Equivalents ... 2

2 Dimensions and Characteristics of Distribution Insulators ... 8

3 Dimensions and Characteristics of Ball-and-Socket Transmission Insulators 9

4 Dimensions and Characteristics of Clevis Transmission Insulators 10

FIGURES

1 Classes 52-1, 52-2, 52-9-A, and 52-9-B .. 11

2 Ball-and-Socket Suspension Insulator Classes 52-3, 52-5, 52-8, and 52-11 12

3 Clevis Suspension Insulator Classes 52-4, 52-6, 52-10, and 52-12 13
<table>
<thead>
<tr>
<th></th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Ball Gauge for Class 52-3 Insulator</td>
</tr>
<tr>
<td>5</td>
<td>Socket Gauge for Class 52-3 and 52-5 Insulators</td>
</tr>
<tr>
<td>6</td>
<td>Ball Gauge for Class 52-5 Insulator</td>
</tr>
<tr>
<td>7</td>
<td>Ball Gauge for Class 52-8 and 52-11 Insulators</td>
</tr>
<tr>
<td>8</td>
<td>Socket Gauge for Class 52-8 and 52-11 Insulators</td>
</tr>
<tr>
<td>9</td>
<td>Schematic Representation of Thermal-Mechanical Performance Test</td>
</tr>
<tr>
<td>10</td>
<td>Impact Testing Machine</td>
</tr>
<tr>
<td>APPENDIX A</td>
<td>22</td>
</tr>
<tr>
<td>APPENDIX B</td>
<td>23</td>
</tr>
</tbody>
</table>
For Wet Process Porcelain and Toughened Glass Insulators—Suspension Type

1 SCOPE

This standard covers suspension-type insulators, 4-1/4 inches (108 millimeters) in diameter and larger, made of wet-process porcelain or of toughened glass and used in the transmission and distribution of electrical energy.

2 REFERENCED AMERICAN NATIONAL STANDARDS

This standard is intended to be used in conjunction with the following American National Standards. When the referenced standards are superseded by a revision approved by the American National Standards Institute Inc., the revision shall apply.

ANSI C29.1-1988 (R2012), Test Methods of Electrical Power Insulators
ANSI Z55.1-1967 (R1973), Gray Finishes for Industrial Apparatus and Equipment
ANSI/IEEE/268-1982, Metric Practice
ASTM A153-82, Specification for Zinc Coating (Hot-Dip) on Iron and Steel Hardware
ASTM C151-84, Test Method for Autoclave Expansion of Portland Cement

3 DEFINITIONS

4 GENERAL

4.1 Insulators shall conform in all respects to the requirements of this standard. The text and figures supplement each other and shall be considered part of this standard.

4.2 Manufacturer’s drawings, if furnished, shall show the outline of the insulators, together with all pertinent dimensions. Any variations in these dimensions due to manufacturing tolerances shall be indicated.

5 MATERIAL

5.1 Insulator Shells

The insulator shells shall be made of wet-process porcelain or toughened glass. Shells shall be sound and free from defects that might adversely affect the insulators.

5.2 Shell Surface

The surface of the shells exposed after the assembly, which shall be glazed for porcelain insulators, shall be relatively smooth and free of imperfections.

Color is not part of this standard. If gray is required, it shall be in accordance with ANSI Z55.1, and shall conform to Munsell notation 5BG 7.0/0.4 with the following tolerances: