NOTICE AND DISCLAIMER

The information in this publication was considered technically sound by the consensus of persons engaged in the development and approval of the document at the time it was developed. Consensus does not necessarily mean that there is unanimous agreement among every person participating in the development of this document.

NEMA standards and guideline publications, of which the document contained herein is one, are developed through a voluntary consensus standards development process. This process brings together volunteers and/or seeks out the views of persons who have an interest in the topic covered by this publication. While NEMA administers the process and establishes rules to promote fairness in the development of consensus, it does not write the document and it does not independently test, evaluate, or verify the accuracy or completeness of any information or the soundness of any judgments contained in its standards and guideline publications.

NEMA disclaims liability for any personal injury, property, or other damages of any nature whatsoever, whether special, indirect, consequential, or compensatory, directly or indirectly resulting from the publication, use of, application, or reliance on this document. NEMA disclaims and makes no guaranty or warranty, express or implied, as to the accuracy or completeness of any information published herein, and disclaims and makes no warranty that the information in this document will fulfill any of your particular purposes or needs. NEMA does not undertake to guarantee the performance of any individual manufacturer or seller’s products or services by virtue of this standard or guide.

In publishing and making this document available, NEMA is not undertaking to render professional or other services for or on behalf of any person or entity, nor is NEMA undertaking to perform any duty owed by any person or entity to someone else. Anyone using this document should rely on his or her own independent judgment or, as appropriate, seek the advice of a competent professional in determining the exercise of reasonable care in any given circumstances. Information and other standards on the topic covered by this publication may be available from other sources, which the user may wish to consult for additional views or information not covered by this publication.

NEMA has no power, nor does it undertake to police or enforce compliance with the contents of this document. NEMA does not certify, test, or inspect products, designs, or installations for safety or health purposes. Any certification or other statement of compliance with any health or safety-related information in this document shall not be attributable to NEMA and is solely the responsibility of the certifier or maker of the statement.
Approval of an American National Standard requires verification by ANSI that the requirements for due process, consensus, and other criteria for approval have been met by the standards developer.

Consensus is established when, in the judgment of the ANSI Board of Standards Review, substantial agreement has been reached by directly and materially affected interests. Substantial agreement means much more than a simple majority, but not necessarily unanimity. Consensus requires that all views and objections be considered, and that a concerted effort be made toward their resolution.

The use of American National Standards is completely voluntary; their existence does not in any respect preclude anyone, whether he has approved the standards or not, from manufacturing, marketing, purchasing, or using products, processes, or procedures not conforming to the standards.

The American National Standards Institute does not develop standards and will in no circumstances give an interpretation of any American National Standard. Moreover, no person shall have the right or authority to issue an interpretation of an American National Standard in the name of the American National Standards Institute. Requests for interpretations should be addressed to the secretariat or sponsor whose name appears on the title page of this standard.

Caution Notice: This American National Standard may be revised or withdrawn at any time. The procedures of the American National Standards Institute require that action be taken periodically to reaffirm, revise, or withdraw this standard. Purchasers of American National Standards may receive current information on all standards by calling or writing the American National Standards Institute.

Published by

National Electrical Manufacturers Association
1300 North 17th Street, Rosslyn, VA 22209

© Copyright 2008 by National Electrical Manufacturers Association
All rights reserved including translation into other languages, reserved under the Universal Copyright Convention, the Berne Convention for the Protection of Literary and Artistic Works, and the International and Pan American Copyright Conventions.

No part of this publication may be reproduced in any form, in an electronic retrieval system or otherwise, without the prior written permission of the publisher.

Printed in the United States of America
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Scope and references</td>
<td>1</td>
</tr>
<tr>
<td>1.2</td>
<td>References</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>Definitions</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>Standards and standardizing equipment</td>
<td>10</td>
</tr>
<tr>
<td>3.1</td>
<td>Scope</td>
<td>10</td>
</tr>
<tr>
<td>3.2</td>
<td>Final authority</td>
<td>10</td>
</tr>
<tr>
<td>3.3</td>
<td>Traceability paths to NIST</td>
<td>10</td>
</tr>
<tr>
<td>3.3.1</td>
<td>Direct transfer</td>
<td>10</td>
</tr>
<tr>
<td>3.4</td>
<td>Meter laboratory</td>
<td>11</td>
</tr>
<tr>
<td>3.4.1</td>
<td>Laboratory conditions</td>
<td>11</td>
</tr>
<tr>
<td>3.4.2</td>
<td>Reference temperature and humidity</td>
<td>12</td>
</tr>
<tr>
<td>3.4.3</td>
<td>Laboratory power sources</td>
<td>12</td>
</tr>
<tr>
<td>3.5</td>
<td>Meter shop</td>
<td>12</td>
</tr>
<tr>
<td>3.6</td>
<td>Laboratory standards</td>
<td>12</td>
</tr>
<tr>
<td>3.6.1</td>
<td>Basic reference standards</td>
<td>12</td>
</tr>
<tr>
<td>3.6.2</td>
<td>Transport standards</td>
<td>12</td>
</tr>
<tr>
<td>3.7</td>
<td>Periodic verification of reference standards</td>
<td>12</td>
</tr>
<tr>
<td>3.8</td>
<td>Portable/field/working standard watthour meters</td>
<td>12</td>
</tr>
<tr>
<td>3.9</td>
<td>Performance records</td>
<td>12</td>
</tr>
<tr>
<td>3.10</td>
<td>Performance requirements for standard watthour meters</td>
<td>13</td>
</tr>
<tr>
<td>3.10.1</td>
<td>General test conditions</td>
<td>13</td>
</tr>
<tr>
<td>3.10.2</td>
<td>Accuracy tests for portable and reference standards</td>
<td>13</td>
</tr>
<tr>
<td>4</td>
<td>Acceptable performance of new types of electricity metering devices and associated equipment</td>
<td>15</td>
</tr>
<tr>
<td>4.1</td>
<td>General</td>
<td>15</td>
</tr>
<tr>
<td>4.1.1</td>
<td>Acceptable metering devices</td>
<td>15</td>
</tr>
<tr>
<td>4.1.2</td>
<td>Adequacy of testing laboratory</td>
<td>15</td>
</tr>
<tr>
<td>4.1.3</td>
<td>Retesting of new meter type</td>
<td>15</td>
</tr>
<tr>
<td>4.1.4</td>
<td>Test documentation</td>
<td>15</td>
</tr>
<tr>
<td>4.1.5</td>
<td>Test device</td>
<td>15</td>
</tr>
<tr>
<td>4.1.6</td>
<td>Tests performed in series</td>
<td>15</td>
</tr>
<tr>
<td>4.1.7</td>
<td>Handling of failed device</td>
<td>15</td>
</tr>
<tr>
<td>4.1.8</td>
<td>Restart testing</td>
<td>15</td>
</tr>
<tr>
<td>4.1.9</td>
<td>Reporting of test metering devices</td>
<td>16</td>
</tr>
<tr>
<td>4.2</td>
<td>Types of metering devices</td>
<td>16</td>
</tr>
<tr>
<td>4.2.1</td>
<td>Basic type</td>
<td>16</td>
</tr>
<tr>
<td>4.2.2</td>
<td>Variations within the basic type</td>
<td>16</td>
</tr>
<tr>
<td>4.2.3</td>
<td>Type designation</td>
<td>16</td>
</tr>
<tr>
<td>4.2.4</td>
<td>Acceptance of basic types in whole or part</td>
<td>16</td>
</tr>
<tr>
<td>4.2.5</td>
<td>Minor variations</td>
<td>16</td>
</tr>
<tr>
<td>4.2.6</td>
<td>Special types</td>
<td>16</td>
</tr>
<tr>
<td>4.3</td>
<td>Specifications for design and construction</td>
<td>16</td>
</tr>
<tr>
<td>4.3.1</td>
<td>Sealing</td>
<td>16</td>
</tr>
<tr>
<td>4.3.2</td>
<td>Enclosures</td>
<td>16</td>
</tr>
<tr>
<td>4.3.3</td>
<td>Terminals and markings</td>
<td>17</td>
</tr>
<tr>
<td>4.3.4</td>
<td>Construction and workmanship</td>
<td>17</td>
</tr>
<tr>
<td>4.3.5</td>
<td>Provision for adjustment</td>
<td>17</td>
</tr>
<tr>
<td>4.4</td>
<td>Selection of metering devices for approval tests</td>
<td>17</td>
</tr>
</tbody>
</table>
4.4.1 Samples to be representative of the basic type .. 17
4.4.2 Number to be tested .. 17
4.5 Conditions of test ... 17
4.5.1 Tests to be applied ... 17
4.5.2 Configuration ... 17
4.5.3 Metering devices for special services .. 18
4.5.4 Metering devices of non-standard classes 18
4.5.5 Metering devices with wide voltage range 18
4.6 Rules governing the acceptance of types ... 18
4.6.1 Tolerances ... 18
4.6.2 Determination of Failure and Rejection ... 18
4.7 Performance requirements .. 19
4.7.1 Test conditions .. 19
4.7.2 Accuracy Tests—Internal Influences .. 21
4.7.3 Accuracy tests – external influences performance verification 36
5 Standards for in-service performance .. 54
5.1 Watthour meters and electronic registers ... 54
5.1.1 Purpose ... 54
5.1.2 Accuracy requirements ... 54
5.1.3 Tests ... 54
5.1.4 Performance tests .. 55
5.1.5 Determination of average percentage registration 56
5.2 Demand registers and pulse recorders .. 57
5.2.1 Accuracy requirements ... 57
5.3 Instrument transformers (magnetic) .. 57
5.3.1 Pre-installation tests, (section 5. shall apply) 57
5.3.2 Instrument transformers removed from service 57
5.3.3 Performance tests .. 58
5.4 Coupling-capacitor voltage transformers 58
5.4.1 Performance tests .. 58
6 Auxiliary pulse devices for electricity metering 59
6.1 General ... 59
6.1.1 Information to be shown on pulse initiator 59
6.1.2 Information to be shown on pulse amplifier or relay 59
6.1.3 Information to be shown on pulse totalizers 59
6.2 Tests to be applied ... 59
6.3 Performance requirements ... 59
6.3.1 Test conditions ... 59
6.3.2 Initial conditions ... 60
6.3.3 Mechanical load .. 60
6.3.4 Insulation .. 60
6.3.5 Performance test ... 60
6.3.6 Sunlight interference test – pulse devices containing optical sensors 61

APPENDICES

A.. 64
B.. 74
C.. 93
D.. 95
E.. 96
F.. 97
TABLES
1 Portable and Reference Standards Percent Errors .. 14
2 Table of Failures Based on the Number of Metering Devices Tested 19
3 List of Tests .. 20
4 Starting Load Test ... 21
5 Load Performance Test ... 21
6 Effect of Variation of Power Factor for Single-Element Meters 22
7 Effect of Power Factor for Two-Element Meters ... 22
8 Effect of Variation of Power Factor for Two-Element Three-Phase Four-Wire Wye Meters ... 23
9 Effect of Variation of Power Factor for Three-Element Three-Phase Four-Wire Wye Meters ... 23
10 Effect of Variation of Voltage ... 24
11 Effect of Variation of Voltage on Solid-State Auxiliary Devices 24
12 Effects of Variation of Frequency ... 25
13 Equality of Current Circuits in the Three-Wire Element for Single-Element Meters ... 25
14 Equality of Current Circuits in the Three-Wire Element for Multi-Element 26
15 Equality of Current Circuits between Elements for Multi-Element Meters 26
16 Temperature-Rise Test Specifications ... 27
17 Effect of Internal Heating .. 32
18 Effect of Tilt ... 33
19 Test for Independence of Elements in Two-Element Meters 35
20 Test for Independence of Elements in Three-Element Meters 36
21 Effect of External Magnetic Field ... 38
22 Effect of Variation of Ambient Temperature .. 39
23 Effect of Variation of Temperature on Solid-State Auxiliary Devices 40
24 Effect of Temporary Overloads on Accuracy .. 40
25 Effect of Current Surge in Ground Conductor .. 41
26 Test Modes, Voltage, and Application for Each External Connection Group—Oscillatory Test ... 44
27 Variable Interval Plan ... 56
28 Performance Test—Pulse Devices .. 60
29 Portable Standard Watthour Meter .. 90
30 Reference Standard Watthour Meters .. 92

FIGURES
1 Dimensions for jumper bars of simulated meter temperature-rise test for single-phase and polyphase meters (maximum rating 100 A) ... 29
2 Dimensions for jumper bars of simulated meter temperature-rise test for single-phase and polyphase meters (maximum rating 101 – 200 A rating) ... 30
3 Dimensions for jumper bars of simulated meter temperature-rise test for single-phase and polyphase meters (maximum rating 201 – 320 A rating) ... 31
4 Electrical Fast Transient/Burst Test # 25 .. 42
5 Electrical Fast Transient/Burst Test # 25 .. 43
6 Typical test layout for radiated susceptibility—Test 26 and radiated and conducted emissions—Test 27 ... 46
7 Typical wiring detail for self contained meters for radiated susceptibility —Test 26 and radiated and conducted emissions —Test 27 ... 47
8 Typical wiring detail for transformer rated meters for radiated susceptibility —Test 26 and radiated and conducted emissions —Test 27 ... 48
9 Typical GTEM test layout for Radiated Susceptibility Test .. 49
10 Sunlight Interference Test ... 62
11 Variable Angles Sunlight Interference Test ... 63
B.1 Traceability path diagram... 76
This page intentionally left blank.
FOREWORD (This Foreword is not part of American National Standard C12.1-2008)

This version of C12.1 has been modified in several areas in an effort to respond to a changing industry and to improve the clarity of some of the tests. The changes, while not extensive, aim to improve the consistency of test procedures and improve the quality of the metering products. This standard continues to form the basic requirement for all kilowatthour metering instruments – both electronic and electromechanical. Another standard in this series, ANSI C12.20, provides different test tolerances and a few different tests that are required for higher accuracy metering devices.

Most of the meter specifications have been retained from the previous edition. Comments about the significant changes follow. To help insure that new electronic equipment is as dependable as possible, an oscillatory surge withstand test was added. Also, the requirement when retesting a new meter type was made more restrictive. Minor changes to the temperature rise test were made to make testing more uniform. Supplementary information was added to the equality of current circuits test, the electrostatic discharge test, and the relative humidity test to clarify the testing process. For several of the tests specific details for successful passing criteria have been included. References to external documents were updated.

The Secretariat of the Accredited Standards Committee on Electricity Metering, C12, is held by the National Electrical Manufacturers Association (NEMA) and the National Institute of Standards and Technology. At the time this standard was processed and approved, the C12 Committee had the following members:

Tom Nelson, Chairman
Paul Orr, Secretary

<table>
<thead>
<tr>
<th>Organization Represented</th>
<th>Name of Representative</th>
</tr>
</thead>
<tbody>
<tr>
<td>Center for Neighborhood Technology</td>
<td>Lawrence Kotewa</td>
</tr>
<tr>
<td>Electric Light & Power</td>
<td>Lauren Pananen</td>
</tr>
<tr>
<td></td>
<td>John McEvoy</td>
</tr>
<tr>
<td></td>
<td>Tim Morgan</td>
</tr>
<tr>
<td></td>
<td>D. Young Nguyen</td>
</tr>
<tr>
<td>Elster Electricity, LLC</td>
<td>Scott Weikel</td>
</tr>
<tr>
<td>EnerNex Corporation</td>
<td>Aaron Snyder</td>
</tr>
<tr>
<td>Future DOS R&D Inc.</td>
<td>Avygdr Moise</td>
</tr>
<tr>
<td>General Electric, Energy</td>
<td>Curt Crittenden</td>
</tr>
<tr>
<td>Institute of Electrical and Electronics Engineers</td>
<td>Richard Tucker</td>
</tr>
<tr>
<td></td>
<td>Herman Millican</td>
</tr>
<tr>
<td>Itron, Inc.</td>
<td>Brent Cain</td>
</tr>
<tr>
<td>Landis+Gyr, Inc</td>
<td>John Voisine</td>
</tr>
<tr>
<td>Measurement Canada (Liaison No Vote)</td>
<td>Vuong Nguyen</td>
</tr>
</tbody>
</table>
The following members of the C12.1 Committee were actively involved in the revision of this standard:

S. Weikel, Chairman

M. Anderson
N. Balko
L. Barto
B. Cain
R. Collins
B. Cook
C. Crittenden
J. DeMars
L. Durante
D. Ellis
T. Everidge
C. Gomez
W. Hardy
Bob Hughes
Brent Hughes
B. Kingham
L. Kotewa
T. Lawton
R. Lokys
E. Malemezian
G. Mayfield
J. McEvoy
H. Millican
A. Moise
T. Morgan
T. Nelson
D. Nguyen
V. Nguyen
D. Nordell
L. Pananen
C. Partridge
A. Rashid
A. Snyder
D. Tandon
A. Thompson
J. Thurber
J. Voisine
S. Weikel
J. West

In addition, the following comprised the Editorial Committee for the current Revision of C12.1:

L. Barto
E. Malemezian
P. Orr
A. Snyder
S. Weikel
Code For Electricity Metering

1 Scope and references

This Code establishes acceptable performance criteria for new types of ac watthour meters, demand meters, demand registers, pulse devices, and auxiliary devices. It describes acceptable in-service performance levels for meters and devices used in revenue metering. It also includes information on related subjects, such as recommended measurement standards, installation requirements, test methods, and test schedules. This Code for Electricity Metering is designed as a reference for those concerned with the art of electricity metering, such as utilities, manufacturers, and regulatory bodies.

1.2 References

The following publications shall be used in conjunction with this standard. When they are superseded by an approved revision, the revision shall apply:

ANSI/IEEE C63.4-2003, Methods of Measurement of Radio-Noise Emissions From Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz

ASQ Z1.4-2003, Sampling Procedures and Tables for Inspection by Attributes

ASQ Z1.9-2003, Sampling Procedures and Tables for Inspection by Variables for Percent Nonconforming

IEEE 1-2000, IEEE Recommended Practice: General Principles for Temperature Limits in the Rating of Electric Equipment and for the Evaluation of Electrical Insulation

IEEE C62.41.2-2002, IEEE Recommended Practice on Characterization of Surges in Low-Voltage (1000 V and less) AC Power Circuits