Approved as an American National Standard
ANSI Approval Date: October 31, 2014

ANSI/NEMA WC 57-2014
ICEA S-73-532-2014

Standard for Control, Thermocouple Extension, and Instrumentation Cables

Prepared and Sponsored by:
Insulated Cable Engineers Association, Inc.
P.O. Box 1568
Carrollton, Georgia 30112

Published by:
National Electrical Manufacturers Association
1300 North 17th Street, Suite 900
Rosslyn, Virginia 22209

www.nema.org

© 2014 National Electrical Manufacturers Association (NEMA) and the Insulated Cable Engineers Association, Inc. (ICEA). All rights, including translation into other languages, reserved under the Universal Copyright Convention, the Berne Convention for the Protection of Literary and Artistic Works, and the International and Pan American copyright conventions.
NOTICE AND DISCLAIMER

The information in this publication was considered technically sound by the consensus of persons engaged in the development and approval of the document at the time it was developed. Consensus does not necessarily mean that there is unanimous agreement among every person participating in the development of this document.

The National Electrical Manufacturers Association (NEMA) and the Insulated Cable Engineers Association (ICEA) standards and guideline publications, of which the document contained herein is one, are developed through a voluntary consensus standards development process. This process brings together persons who have an interest in the topic covered by this publication. While NEMA and ICEA administer the process and establish rules to promote fairness in the development of consensus, they do not independently test, evaluate, or verify the accuracy or completeness of any information or the soundness of any judgments contained in its standards and guideline publications.

NEMA and ICEA disclaim liability for personal injury, property, or other damages of any nature whatsoever, whether special, indirect, consequential, or compensatory, directly or indirectly resulting from the publication, use of, application, or reliance on this document. NEMA and ICEA disclaim and make no guaranty or warranty, expressed or implied, as to the accuracy or completeness of any information published herein, and disclaims and makes no warranty that the information in this document will fulfill any of your particular purposes or needs. NEMA and ICEA do not undertake to guarantee the performance of any individual manufacturer or seller's products or services by virtue of this standard or guide.

In publishing and making this document available, NEMA and ICEA are not undertaking to render professional or other services for or on behalf of any person or entity, nor are NEMA and ICEA undertaking to perform any duty owed by any person or entity to someone else. Anyone using this document should rely on his or her own independent judgment or, as appropriate, seek the advice of a competent professional in determining the exercise of reasonable care in any given circumstances. Information and other standards on the topic covered by this publication may be available from other sources, which the user may wish to consult for additional views or information not covered by this publication.

NEMA and ICEA have no power, nor do they undertake to police or enforce compliance with the contents of this document. NEMA and ICEA do not certify, test, or inspect products, designs, or installations for safety or health purposes. Any certification or other statement of compliance with any health- or safety-related information in this document shall not be attributable to NEMA and ICEA and is solely the responsibility of the certifier or maker of the statement.
Foreword

The Standard for Control, Thermocouple Extension and Instrumentation Cables, ICEA S-73-532, NEMA WC 57-2003, was developed by the Insulated Cable Engineers Association, Inc. (ICEA) and approved by the National Electrical Manufacturers Association (NEMA). Unless otherwise noted as Authorized Engineering Information, this standards publication has been approved by NEMA as a NEMA Standard.

ICEA/NEMA standards are adopted in the public interest and are designed to eliminate misunderstanding between the manufacturer and the user and to assist users in selecting and obtaining the proper product for their particular needs. Existence of an ICEA/NEMA standard does not in any respect preclude the manufacture or use of products not conforming to the standard. The user of this standard is cautioned to observe any health or safety regulations and rules relative to the manufacture and use of cable made in conformity with this standard.

This standard does not specify any specific frequencies for sampling for test purposes, cable products, or components. One program of sampling frequencies is given in Publication ICEA T-26-465/NEMA WC 54-2013.

Requests for interpretation of this standard must be submitted in writing to the Insulated Cable Engineers Association, Inc., PO Box 1568, Carrollton, GA 30112. An official written interpretation will be provided, once approved by ICEA and NEMA. Suggestions for improvements gained in the use of this publication are welcomed by the Association.
Contents—Condensed*

<table>
<thead>
<tr>
<th>Section</th>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>GENERAL</td>
<td>1</td>
</tr>
<tr>
<td>CONDUCTORS</td>
<td>2</td>
</tr>
<tr>
<td>INSULATIONS</td>
<td>3</td>
</tr>
<tr>
<td>SHIELDINGS AND COVERINGS</td>
<td>4</td>
</tr>
<tr>
<td>ASSEMBLY, FILLERS, AND CONDUCTOR IDENTIFICATION</td>
<td>5</td>
</tr>
<tr>
<td>TESTING AND TEST METHODS</td>
<td>6</td>
</tr>
<tr>
<td>SPECIAL CONSTRUCTIONS</td>
<td>7</td>
</tr>
<tr>
<td>ANNEXES</td>
<td>8</td>
</tr>
</tbody>
</table>

*See next pages for a more detailed Table of Contents.
Contents

Foreword ... i
Contents—Condensed .. ii
Scope ... vi
Section 1 GENERAL ... 1
1.1 GENERAL INFORMATION ... 1
1.2 INFORMATION TO BE SUPPLIED BY PURCHASER 2
Section 2 CONDUCTORS .. 3
2.1 GENERAL ... 3
2.2 WIRES, PHYSICAL AND ELECTRIC PROPERTIES ... 3
2.3 COPPER CONDUCTORS .. 3
 2.3.1 Wires .. 3
 2.3.2 Solid Conductors .. 3
 2.3.3 Stranded Conductors .. 3
 2.3.4 Conductor DC Resistance per Unit Length 3
 2.3.5 Conductor Diameter ... 5
2.4 CONDUCTORS FOR THERMOCOUPLE EXTENSION WIRES 6
 2.4.1 Conductor Material ... 6
 2.4.2 Size and Diameter .. 6
 2.4.3 Direct-current (DC) Resistance of Conductors 7
 2.4.4 Temperature Limits of Conductors 7
 2.4.5 Limits of Error of Conductors 7
Section 3 INSULATIONS ... 9
3.1 GENERAL ... 9
3.2 MATERIALS .. 9
3.3 THICKNESS .. 9
 3.3.1 SR ... 9
 3.3.2 PE ... 9
 3.3.3 PVC .. 10
3.4 REQUIREMENTS ... 11
 3.4.1 Crosslinked Polyethylene (XLPE) Insulation, Type I and Type II ... 11
 3.4.2 Ethylene Propylene Rubber (EP) Insulation, Type I and Type II 11
 3.4.3 Ozone Resisting Silicone Rubber (SR) Insulation 11
 3.4.4 Chlorosulfonated Polyethylene (CSPE) Insulation 11
 3.4.5 Polyvinyl Chloride (PVC) Insulation 11
 3.4.6 Polyvinyl Chloride/Nylon (PVC/Nylon) Insulation 12
 3.4.7 Polyethylene (PE) Insulation 12
 3.4.8 Composite Insulation 12
 3.4.9 Styrene Butadiene Rubber (SBR) Insulation 12
 3.4.10 Thermoplastic Elastomer (TPE) Insulation, Type I and Type II 12
 3.4.11 Jacket over Insulation 12
 3.4.12 Repairs ... 12
3.5 VOLTAGE TESTS .. 12
 3.5.1 Production Tests ... 12
 3.5.2 Acceptance Testing After Installation 13
3.6 INSULATION RESISTANCE .. 18
3.7 TYPE A FLAME TEST ... 18
3.8 TYPE B FLAME TEST ... 18

© 2014 National Electrical Manufacturers Association
and the Insulated Cable Engineers Association, Inc.
Section 4 SHIELDINGS AND COVERINGS

4.1 SHIELDING—GENERAL
4.1.1 Shield Continuity
4.1.2 Shield Isolation
4.1.3 Metal Tape Shields
4.1.4 Metal Braid Shields
4.1.5 Metal Wire Shields
4.2 JACKETS
4.2.1 Thickness
4.2.2 Requirements
4.2.3 Binder
4.3 METALLIC AND ASSOCIATED COVERINGS
4.3.1 Types of Metallic Coverings
4.3.2 Core Covering for Nonshielded and Nonjacketed Cable with Metallic Armor
4.3.3 Interlocked Metal Tape Armor
4.3.4 Galvanized Steel Wire Armor
4.3.5 Flat Metal Tape Armor
4.3.6 Continuously Corrugated Metal Armor
4.3.7 Thermoplastic or Crosslinked Coverings over Metallic Armor

Section 5 ASSEMBLY, FILLERS, AND CONDUCTOR IDENTIFICATION

5.1 ASSEMBLY OF MULTIPLE CONDUCTOR CABLES
5.1.1 Round Cables
5.1.2 Subassemblies
5.1.3 Flat Twin Cables
5.2 FILLERS
5.3 BINDERS
5.4 CONDUCTOR IDENTIFICATION

Section 6 TESTING AND TEST METHODS

6.1 TESTING—GENERAL
6.2 CONDUCTOR TEST METHODS
6.3 THICKNESS MEASUREMENTS FOR INSULATIONS AND NONMETALLIC JACKETS
6.4 PHYSICAL AND AGING TESTS FOR INSULATIONS AND JACKETS
6.4.1 Size and Preparation of Specimens
6.4.2 Calculation of Test Specimen Area
6.4.3 Physical Test Procedures
6.5 TENSILE STRENGTH TEST
6.6 TENSILE STRESS TEST
6.7 ELONGATION TEST
6.8 SET TEST
6.9 AGING TESTS
6.9.1 Test Specimens
6.9.2 Air Oven Test
6.9.3 Oil Immersion Test
6.9.4 Hot Creep Test
6.9.5 Heat Distortion for Insulated Conductors
6.9.6 Heat Distortion for Thermoplastic Jackets
6.9.7 Heat Shock for Thermoplastic Jackets
6.9.8 Nylon Wrap Test
6.10 OZONE RESISTANCE TEST
6.11 THICKNESS OF COVERINGS
6.12 ENVIRONMENTAL CRACKING
6.13 ABSORPTION COEFFICIENT
6.14 ACCELERATED WATER ABSORPTION
6.14.1 General
6.14.2 Electrical Method (EM-60)
© 2014 National Electrical Manufacturers Association
and the Insulated Cable Engineers Association, Inc.
Scope

This standard applies to materials, construction, and testing of multiconductor control, thermocouple extension, and instrumentation cables rated up to and including 125°C. Control cables are multiconductor cables that convey electrical signals used for monitoring or controlling electrical power systems and their associated processes. Control cables convey signals between devices interfaced directly with the electrical power system, such as current transformers, potential transformers, relays, switches, and meters. Instrumentation cables and thermocouple extensions are multiconductor cables that convey low-energy electrical signals (circuits that are inherently power limited) used for monitoring or controlling electrical power systems and their associated processes. Instrumentation cables and thermocouple extensions convey signals from process monitors to process analyzers (usually electronic equipment) and from the analyzers to control equipment in the electric power system. Construction details and test requirements for cables rated above 125°C can be found in the NEMA HP-100 series of standards.