American National Standard

Protocol Specification
For
Interfacing to Data Communication Networks

Secretariat:
National Electrical Manufacturers Association
Approved January 9, 2009
American National Standards Institute, Inc.
NOTICE AND DISCLAIMER

The information in this publication was considered technically sound by the consensus of persons engaged in the development and approval of the document at the time it was developed. Consensus does not necessarily mean that there is unanimous agreement among every person participating in the development of this document.

NEMA standards and guideline publications, of which the document contained herein is one, are developed through a voluntary consensus standards development process. This process brings together volunteers and/or seeks out the views of persons who have an interest in the topic covered by this publication. While NEMA administers the process and establishes rules to promote fairness in the development of consensus, it does not write the document and it does not independently test, evaluate, or verify the accuracy or completeness of any information or the soundness of any judgments contained in its standards and guideline publications.

NEMA disclaims liability for any personal injury, property, or other damages of any nature whatsoever, whether special, indirect, consequential, or compensatory, directly or indirectly resulting from the publication, use of, application, or reliance on this document. NEMA disclaims and makes no guaranty or warranty, express or implied, as to the accuracy or completeness of any information published herein, and disclaims and makes no warranty that the information in this document will fulfill any of your particular purposes or needs. NEMA does not undertake to guarantee the performance of any individual manufacturer or seller’s products or services by virtue of this standard or guide.

In publishing and making this document available, NEMA is not undertaking to render professional or other services for or on behalf of any person or entity, nor is NEMA undertaking to perform any duty owed by any person or entity to someone else. Anyone using this document should rely on his or her own independent judgment or, as appropriate, seek the advice of a competent professional in determining the exercise of reasonable care in any given circumstances. Information and other standards on the topic covered by this publication may be available from other sources, which the user may wish to consult for additional views or information not covered by this publication.

NEMA has no power, nor does it undertake to police or enforce compliance with the contents of this document. NEMA does not certify, test, or inspect products, designs, or installations for safety or health purposes. Any certification or other statement of compliance with any health or safety–related information in this document shall not be attributable to NEMA and is solely the responsibility of the certifier or maker of the statement.
AMERICAN NATIONAL STANDARD

Approval of an American National Standard requires verification by ANSI that the requirements for due process, consensus, and other criteria for approval have been met by the standards developer.

Consensus is established when, in the judgment of the ANSI Board of Standards Review, substantial agreement has been reached by directly and materially affected interests. Substantial agreement means much more than a simple majority, but not necessarily unanimity. Consensus requires that all views and objections be considered, and that a concerted effort be made toward their resolution.

The use of American National Standards is completely voluntary; their existence does not in any respect preclude anyone, whether he has approved the standards or not, from manufacturing, marketing, purchasing, or using products, processes, or procedures not conforming to the standards.

The American National Standards Institute does not develop standards and will in no circumstances give an interpretation of any American National Standard. Moreover, no person shall have the right or authority to issue an interpretation of an American National Standard in the name of the American National Standards Institute. Requests for interpretations should be addressed to the secretariat or sponsor whose name appears on the title page of this standard.

Caution Notice: This American National Standard may be revised or withdrawn at any time. The procedures of the American National Standards Institute require that action be taken periodically to reaffirm, revise, or withdraw this standard. Purchasers of American National Standards may receive current information on all standards by calling or writing the American National Standards Institute.

Published by

National Electrical Manufacturers Association
1300 North 17th Street, Rosslyn, VA 22209

© Copyright 2008 by National Electrical Manufacturers Association
All rights reserved including translation into other languages, reserved under the Universal Copyright Convention, the Berne Convention for the Protection of Literary and Artistic Works, and the International and Pan American Copyright Conventions.

No part of this publication may be reproduced in any form, in an electronic retrieval system or otherwise, without the prior written permission of the publisher.

Printed in the United States of America
This page intentionally left blank.
Contents

| Page |
|------------------|---|
| 1 | SCOPE | 1 |
| 2 | REFERENCES | 2 |
| 2.1 | NORMATIVE | 2 |
| 2.2 | OTHERS | 4 |
| 3 | DEFINITIONS AND SYNTAX | 4 |
| 3.1 | DEFINITIONS | 4 |
| 3.1.1 | Absolute UID | 4 |
| 3.1.2 | ACSE | 4 |
| 3.1.3 | APDU Segment | 5 |
| 3.1.4 | Application Association | 5 |
| 3.1.5 | Application Context | 5 |
| 3.1.6 | Application Entity | 5 |
| 3.1.7 | Application Process | 5 |
| 3.1.8 | Application Protocol Data Unit (APDU) | 5 |
| 3.1.9 | ApTitle | 5 |
| 3.1.10 | Association | 5 |
| 3.1.11 | BER | 5 |
| 3.1.12 | Bit | 5 |
| 3.1.13 | Byte | 6 |
| 3.1.14 | C12.19 Device | 6 |
| 3.1.15 | C12.19 Device Class | 6 |
| 3.1.16 | C12.22 Application | 6 |
| 3.1.17 | C12.22 Authentication Host | 6 |
| 3.1.18 | C12.22 Client | 6 |
| 3.1.19 | C12.22 Communication Module | 6 |
| 3.1.20 | C12.22 Datagram Segmentation and Reassembly | 6 |
| 3.1.21 | C12.22 Device | 6 |
| 3.1.22 | C12.22 Gateway | 6 |
| 3.1.23 | C12.22 Host | 7 |
| 3.1.24 | C12.22 Master Relay | 7 |
| 3.1.25 | C12.22 Message | 7 |
| 3.1.26 | C12.22 Network | 7 |
| 3.1.27 | C12.22 Network Segment | 7 |
| 3.1.28 | C12.22 Node | 7 |
| 3.1.29 | C12.22 Notification Host | 7 |
| 3.1.30 | C12.22 Relay | 7 |
| 3.1.31 | C12.22 Server | 7 |
| 3.1.32 | Called ApTitle | 7 |
| 3.1.33 | Calling ApTitle | 7 |
| 3.1.34 | Channel | 7 |
| 3.1.35 | Cipher | 8 |
| 3.1.36 | Cipher, Inverse | 8 |
| 3.1.37 | Ciphertext | 8 |
| 3.1.38 | ClearText | 8 |
| 3.1.39 | Connection | 8 |
| 3.1.40 | Datagram | 8 |
| 3.1.41 | EPSEM | 8 |
| 3.1.42 | Fragment | 8 |
4 REFERENCE TOPOLOGY...10

5 C12.22 NODE TO C12.22 NETWORK SEGMENT DETAILS...12

5.1 C12.22 NODE TO C12.22 NETWORK SEGMENT REFERENCE ..12
5.2 DATA ENCODING RULES..12
5.2.1 Data order...12
5.2.2 Length Fields Encoding ...13
5.2.3 Universal Identifiers Encoding ..13
5.2.4 Universal Identifiers Canonical Encoding ...15

5.3 LAYER 7—APPLICATION LAYER ..15
5.3.1 Data Structure—Utility Industry Data Tables...15
5.3.2 EPSEM...15
5.3.2.1 Request Codes...16
5.3.2.2 Response Codes..16
5.3.2.3 Time-out...19
5.3.2.3.1 Session Time-out...19
5.3.2.3.2 Application Layer Response Time-out...20
5.3.2.4 Services..20
5.3.2.4.1 Identification Service...20
5.3.2.4.2 Read Service...23
5.3.2.4.3 Write Service...25
5.3.2.4.4 Logon Service...26
5.3.2.4.5 Security Service..27
5.3.2.4.6 Logoff Service...28
5.3.2.4.7 Terminate Service...28
5.3.2.4.8 Disconnect Service...29
5.3.2.4.9 Wait Service...30
5.3.2.4.10 Registration Service..30
5.3.2.4.11 Deregistration Service ..37
5.3.2.4.12 Resolve Service...37
5.3.2.4.13 Trace Service..38
5.3.2.5 Service sequence state control ..39
5.3.2.6 Partial Table access using index/element-count Method..41
5.3.2.7 Partial Table access using offset/octet-count method ..43
5.3.3 EPSEM Envelope Structure..44
5.3.4 Association Control—Association Control Service Element (ACSE)...45
5.3.4.1 Application Context Element (A1u)...46
5.3.4.2 Called AP Title Element (A2u)..47
5.3.4.3 Calling AP Title Element (A6u)...47
5.3.4.4 Universal Identifier of Called and Calling AP Title Element (06u)..47
5.3.4.5 Relative Universal Identifier of Called and Calling AP Title Element (80u)...48
5.3.4.6 Calling Application Entity Qualifier Element (A7u)...48
5.3.4.7 Mechanism Name Element (8Bu)...49
6 PROTOCOL DETAILS: C12.22 DEVICE TO C12.22 COMMUNICATION MODULE INTERFACE 77

6.1 INTERFACE ARCHITECTURE ... 77
6.2 INTERFACE DIAGRAM ... 77
6.3 IMPLEMENTATION GUIDELINES ... 78
6.3.1 C12.22 Communication Module .. 78
6.3.2 C12.22 Device .. 79
6.4 LAYER 7—APPLICATION LAYER ... 79
6.5 LAYER 6—PRESENTATION LAYER ... 80
6.6 LAYER 5—SESSION LAYER ... 80
6.7 LAYER 4—TRANSPORT LAYER ... 80
6.8 LAYER 3—NETWORK LAYER ... 80
6.9 LAYER 2—DATA LINK LAYER .. 96
6.9.1 Basic Data Information ... 97
6.9.1.1 Fixed Settings ... 97
6.9.1.2 Variable Settings .. 97
6.9.2 Packet Definition .. 97
6.9.3 CRC Selection ... 97
6.9.4 Acknowledgment .. 99
6.9.5 Retry Attempts ... 100
6.9.6 Timeouts .. 100
6.9.6.1 Traffic Time-out .. 100
6.9.6.2 Inter-character Time-out .. 100
Foreword (This Foreword is not part of American National Standard C12.22-2008.)

This Standard is another in the series of communications protocols that describe how to transport Tables (defined in ANSI C12.19, “Utility Industry End Device Data Tables”). Because this Standard describes a protocol that operates over networks, it is necessarily more complex than the simple point-to-point protocols defined in ANSI C12.18 and ANSI C12.21, but the committee has done as much as practical to smooth the transition from those earlier standards.

This Standard describes three different but related uses. One is the operation of the protocol over the network that all C12.22 Nodes implement. The second is an optionally exposed point-to-point interface between a C12.22 Device, e.g., a meter, and, a C12.22 Communications Module, e.g., a network adaptor. The third is the capture, translation and transmission of one way device messages (blurts).

This division was chosen to foster interoperability among communications modules and meters. Suggestions for improvement to this Standard are welcome. They should be sent to:

National Electrical Manufacturers Association
Vice President, Technical Services
1300 North 17th Street
Suite 1752
Rosslyn, VA 22209

This Standard was processed and approved for submittal to ANSI by Accredited Standards Committee for Electricity Metering C12. At the time the committee approved this Standard, the C12 Committee had the following members:

Tom Nelson, Chairman
Paul Orr, Secretary—NEMA Staff

Name of Representative: Georgia Power
Larry Barto
Ron Breschini
Brent Cain
Curt Crittenden
Jim DeMars
David Ellis
Tim Everidge
Shawn Glasgow
Bill Hardy
Bob Hughes
Brad Johnson
Lawrence Kotewa
Herman Millican
Avygdor Moise
Tim Morgan
Tom Nelson
D. Young Nguyen
Dan Nordell
Dave Scott
Aaron Snyder
George Steiner
Jim Thurber
Richard Tucker
Michel Veillette
John Voisine
H.A. Wall

Organization Represented: Underwriters Laboratories, Inc.
Itron, Inc.
GE Energy
Florida Power & Light Co.
Public Service Electric & Gas
Radian Research, Inc.
Milbank Manufacturing
Technology for Energy Corporation
Schweitzer Engineering Labs, Inc.
Oncor Group
Center for Neighborhood Technology
Austin Energy
Future DOS R&D Inc.
Duke Energy Company
Natl Inst. of Standards & Technology
Pacific Gas & Electric Company
Xcel Energy EMC
Plexus
EnerNex Corporation
Sensus Metering
Baltimore Gas & Electric Company
Tucker Engineering
Trilliant Networks, Inc.
Landis+Gyr
Watthour Engineering Co.
Working Group 1 of Subcommittee 17 that developed the Standard consisted of:

Ed Beroset, Chairman
Richard Tucker, Vice Chairman
Michel Veillette, Editor
Paul Orr, Secretary—NEMA Staff

Name of Representative:
- Michael Anderson
- Norbert Balko
- Ed Beroset
- Bill Beverly
- William Buckley
- Martin Burns
- Brent Cain
- Richard Coblens
- Raymond Gaudreault
- Derek Gibbs
- Ken Gilmer
- Greg Gomez
- David Haynes
- Mark Iacoviello
- Janice Jennings
- Jean Joly
- Brad Johnson
- Lawrence Kotewa
- Jacques Ledoux
- Keith Martin
- Peter Martin
- Ed May
- Bill Mazza
- Robert McMichael
- Avygdor Moise
- John Newbury
- Dan Nordell
- Vuong Nguyen
- James Pace
- Terry Penn
- Marc Purc
- Bin Qiu
- Wesley Ray
- Jeff Richardson
- Bill Rush
- Ruben Salazar
- Chris Schafer
- Robby Simpson
- Kendall Smith
- Aaron Snyder
- John Taylor
- Richard Tucker
- Michel Veillette
- Ted York
- Virginia Zinkowski

Organization Represented:
- Landis+Gyr
- Invensys Metering Systems
- Elster Electricity
- Austin International Inc.
- Consultant for Itron, Inc
- Hypertek Inc. for EPRI
- Itron, Inc.
- Schlumberger Electricity
- C-MAC
- Smartsynch
- Itron, Inc.
- Badger Meter
- Aclara
- Distribution Control Systems
- Schlumberger Electricity
- Hydro-Quebec
- Oncor
- Center for Neighborhood Technology
- Trilliant Networks, Inc.
- Tantalus Systems Corp.
- Distribution Control Systems, Inc.
- Itron, Inc.
- Invensys Metering Systems
- Itron, Inc.
- Future DOS R&D Inc.
- Open University
- Northern States Power Co.
- Measurement Canada
- Silver Springs Networks
- Southern Company
- Schlumberger
- Landis+Gyr, Inc
- Duke Energy Corp.
- Elster Metering
- IGT
- Landis+Gyr
- Itron Inc.
- GE Energy
- Hexagram
- EnerNex Corporation
- American Innovations
- Tucker Engineering
- Trilliant Networks, Inc.
- THY Consulting
- GE Energy
This page intentionally left blank.
1 Scope

Initially, communications with electronic devices consisted of transporting memory data via proprietary protocols that were unique to each manufacturer. The desire for interoperability and support for multiple manufacturers by reading and programming systems created a need for standardization of data formats and transport protocols.

The first step was to standardize data formats. Internal data was abstracted as a set of Tables. A set of standard Table contents and formats were defined in ANSI C12.19, “Utility Industry End Device Data Tables.”

In the “Protocol Specification for ANSI Type 2 Optical Port” (ANSI C12.18) Standard, a point-to-point protocol was developed to transport table data over an optical connection. The ANSI C12.18 protocol included an application language called Protocol Specification for Electric Metering (PSEM) that allowed applications to read and write Tables. The “Protocol Specification for Telephone Modem Communication” (ANSI C12.21) was then developed to allow devices to use PSEM to transport Tables over telephone modems.

This Standard extends on the concepts of the ANSI C12.18, ANSI C12.19 and the ANSI C12.21 standards to allow transport of Table data over any reliable networking communications system. Note that in this use of the word, “reliable” means that for every message sent, the sender receives a response at its option: either a positive acknowledgement or an error message. That is, messages cannot fail silently in a reliable network (see discussion of Reliable Stream Transport Service in [IPPA : 1995]).

In addition, this Standard describes an optionally exposed point-to-point interface between a C12.22 Device and a C12.22 Communications Module designed to attach to “any” network.

Furthermore, this Standard defines a methodology to capture, translate and transmit one way device messages (blurts).

This Standard defines interfaces between ANSI C12.19 Devices and network protocols.

Specific goals identified by the committee in the creation of this Standard were:

1. Defining a Datagram that may convey ANSI C12.19 data Tables through any network

 This was accomplished by:
 - Assuming that the data source is ANSI C12.19 data Tables
 - Defining the Application Layer services (language)

2. Providing a full stack definition for interfacing a C12.22 Device to a C12.22 Communication Module

 This was accomplished by:
 - Defining the physical interface requirements between the C12.22 Device and the C12.22 Communication Module
 - Defining the interface lower layers; 4 (transport), 3 (network), 2 (data link) and 1 (physical)
3. Providing a full stack definition for point-to-point communication to be used over local ports such as optical ports, or modems

 This was accomplished by defining a Layer 4 (transport) and Layer 2 (data link)

4. Providing support for efficient one-way messaging (blurts)

 This was accomplished by:
 • Defining a compact message format that can be easily transformed to a standard ANSI C12.22 Datagram
 • Assuring that all needed layers defined in this Standard can support one-way messaging

 This was accomplished by:
 • Defining different type of nodes such as C12.22 Relay, C12.22 Master Relay, C12.22 Host, C12.22 Authentication Host, C12.22 Notification Host, and C12.22 Gateway
 • Defining the role and responsibilities of each of these C12.22 Nodes

6. Providing data structure definitions in support of this protocol

 This was accomplished by:
 • Defining an ANSI C12.19 Decade to be used by C12.22 Nodes
 • Defining an ANSI C12.19 Decade to be used by C12.22 Relays
 • Defining new procedures in support of this protocol
 • Defining a new Table for enhanced security

2 References

2.1 Normative

ANSI C12.18-1996 Protocol Specification for ANSI Type 2 Optical Port
ANSI C12.19-1997 Utility Industry End Device Data Tables
ANSI C12.21-1999 Protocol Specification for Telephone Modem Communication
IEEE C62.41-2002 IEEE Recommended Practice on Surge Voltages in Low-voltage AC Power Circuits
ISO/IEC 7498-1 Information Technology—Open Systems Interconnection—Basic Reference Model: The Basic Model