American National Standard for Lamp Ballasts—
High Frequency Fluorescent Lamp Ballasts

Secretariat:

National Electrical Manufacturers Association

Approved: January 23, 2017

American National Standards Institute, Inc.
NOTICE AND DISCLAIMER

The information in this publication was considered technically sound by the consensus of persons engaged in the development and approval of the document at the time it was developed. Consensus does not necessarily mean that there is unanimous agreement among every person participating in the development of this document.

ANSI standards and guideline publications, of which the document contained herein is one, are developed through a voluntary consensus standards development process. This process brings together volunteers and/or seeks out the views of persons who have an interest in the topic covered by this publication. While NEMA administers the process to promote fairness in the development of consensus, it does not write the document and it does not independently test, evaluate, or verify the accuracy or completeness of any information or the soundness of any judgments contained in its standards and guideline publications.

NEMA disclaims liability for any personal injury, property, or other damages of any nature whatsoever, whether special, indirect, consequential, or compensatory, directly or indirectly resulting from the publication, use of, application, or reliance on this document. NEMA disclaims and makes no guaranty or warranty, expressed or implied, as to the accuracy or completeness of any information published herein, and disclaims and makes no warranty that the information in this document will fulfill any of your particular purposes or needs. NEMA does not undertake to guarantee the performance of any individual manufacturer or seller’s products or services by virtue of this standard or guide.

In publishing and making this document available, NEMA is not undertaking to render professional or other services for or on behalf of any person or entity, nor is NEMA undertaking to perform any duty owed by any person or entity to someone else. Anyone using this document should rely on his or her own independent judgment or, as appropriate, seek the advice of a competent professional in determining the exercise of reasonable care in any given circumstances. Information and other standards on the topic covered by this publication may be available from other sources, which the user may wish to consult for additional views or information not covered by this publication.

NEMA has no power, nor does it undertake to police or enforce compliance with the contents of this document. NEMA does not certify, test, or inspect products, designs, or installations for safety or health purposes. Any certification or other statement of compliance with any health- or safety-related information in this document shall not be attributable to NEMA and is solely the responsibility of the certifier or maker of the statement.

© 2017 National Electrical Manufacturers Association
Approval of an American National Standard requires verification by The American National Standards Institute, Inc. (ANSI) that the requirements for due process, consensus, and other criteria for approval have been met by the standards developer. An American National Standard implies a consensus of those substantially concerned with its scope and provisions. Consensus is established when, in the judgment of the ANSI Board of Standards Review, substantial agreement has been reached by directly, and materially affected interests. Substantial agreement means much more than a simple majority, but not necessarily unanimity. Consensus requires that all views and objections be considered, and that a concerted effort be made toward their resolution.

The existence of an American National Standard does not in any respect preclude anyone, whether s/he has approved the standard or not, from manufacturing, marketing, purchasing, or using products, processes, or procedures not conforming to the standards. It is intended as a guide to aid the manufacturer, the consumer, and the general public.

The American National Standards Institute, Inc., does not develop standards and will in no circumstances give an interpretation of any American National Standard. Moreover, no person shall have the right or authority to issue an interpretation of an American National Standard in the name of the American National Standards Institute, Inc. Requests for interpretations should be addressed to the secretariat or sponsor whose name appears on this title page.

CAUTION NOTICE: This American National Standard may be revised or withdrawn at any time. The procedures of the American National Standards Institute, Inc., require that action be taken periodically to reaffirm, revise, or withdraw this standard. Purchasers of American National Standards may receive current information on all standards by calling or writing the American National Standards Institute, Inc.
Foreword (This foreword is not part of American National Standard C82.11-2017)

Suggestions for improvement of this standard should be submitted to the Secretariat C82, American National Standard Lighting Group, 1300 North 17th Street, Suite 900, Rosslyn, VA 22209.

This standard was processed and approved by the Accredited Standards Committee on lamp ballasts, C82. Committee approval of the standard does not necessarily imply that all committee members voted for that approval.
CONTENTS

Foreword .. ii
1 Scope .. 1
 1.2 Important patent disclaimer .. 1
2 Normative references .. 1
3 Characteristics .. 2
 3.1 Input power factor ... 2
 3.1.1 High frequency current crest factor ... 2
4 Ballast Marking ... 2
 4.1 Marking ... 2
 4.1.1 Power factor .. 2
 4.1.2 High-frequency ... 2
 4.2 Color coding of ballast leads ... 3
 4.2.1 Supply leads ... 3
 4.2.2 Lamp lead wires – table 1 .. 3
 4.2.3 Other ballast types ... 4
Table 1 Color coding for lamp leads ... 4
5 Ballast Performance ... 5
 5.1 General ... 5
 5.2 Starting conditions .. 5
 5.2.1 Starting ... 5
 5.2.2 Fixture and circuit grounding ... 5
 5.2.3 Lamp starting requirements based on ballast type 5
 5.3 Ballast Output ... 7
 5.3.1 Ballast Factor (Relative Lamp light output) 7
 5.3.2 Lamp light output .. 8
 5.3.3 Lamp current ... 8
 5.4 Cathode preheating current .. 8
 5.5 Regulation .. 8
 5.5.1 Rapid-start ballasts .. 8
 5.5.2 Instant-start ballasts ... 8
 5.6 Operating-current waveshape .. 8
 5.6.1 Normal operating conditions ... 8
 5.6.2 Special operating condition .. 9
 5.7 Supplementary cathode heating ... 9
 5.7.1 Switch-start ballasts .. 9
 5.7.2 Rapid-start ballasts ... 9
 5.8 Electro-magnetic interference suppression ... 9
 5.9 Ballast safety .. 9
 5.10 Input current, harmonic distortion .. 9
5.11 Line transient requirements ... 10
5.12 Inrush currents ... 10

Table 2 Bulk energy capacitances .. 11

Table 3 Peak current requirements .. 11
5.13 Ballast efficiency .. 11

6 Design Center Voltages ... 11

7 Application Requirements ... 12
7.1 Wiring and contact resistance requirements .. 12
7.2 Operating temperature limits ... 12
7.3 Supply voltage limits .. 12
 7.3.1 Average voltage for satisfactory ballast operation 13
 7.3.2 Voltage excursions .. 13
7.4 Equipment grounding .. 13
7.5 Audible sound level .. 13

8 End of Life .. 13
8.1 Asymmetric pulse test ... 13
8.2 Asymmetric power test .. 14
8.3 Open filament test .. 14

Figure 1a Rapid Start Time (t) Definitions ... 15
Figure 1b Instant Start Time (t) Definitions ... 16
Figure 1c Programmed Start Waveforms .. 17

Annexes .. 18

Annex A (Normative) Specification for Low Voltage Control Interface for Controllable Ballasts .. 19
A1 Purpose .. 19
A2 Definitions .. 19
 A2.1 Controllable ballasts .. 19
 A2.2 Control terminals ... 19
 A2.3 Control signal .. 19
 A2.4 Maximum value of lamp power (of a controllable ballast) 19
 A2.5 Minimum value of lamp power (of a controllable ballast) 19
A3 Control Methods ... 20
 A3.1 Control by D.C. voltage (ANSI Type 1) 20
 A3.2 Voltage specifications .. 20
 A3.3 Control input current limits ... 20
 A3.4 Switch-on .. 20
 A3.5 Lead wire colors ... 21
 A3.6 Control by future types of controls (ANSI Type xx) 21

© 2017 National Electrical Manufacturers Association
Annex B (Informative) Specification for Marking Nomenclature for Controllable Ballasts

B1 Purpose ... 24
B2 Technical Parameters .. 24
 B2.1 Power source ... 24
 B2.2 Circuit type ... 24
 B2.2.1 High voltage ... 24
 B2.2.2 High voltage, carrier current ... 25
 B2.2.3 Low voltage .. 25
B3 Current type ... 25
B4 Modulation type ... 25
B5 Range of varying voltage ... 25
B6 Nomenclature of designation ... 25
 B6.1 Examples ... 25
B7 Administration of this document ... 26
 B7.1 Revision ... 26

Figure B-1 ... 27

Annex C (Normative) Method of Measurement ... 28

C1 Pertinent measurements.. 28
C2 Electrical supply characteristics ... 28
 C2.1 Test voltage and rated frequency ... 28
 C2.2 Line-voltage waveshape .. 29
C3 Ambient conditions for lamp measurements .. 29
 C3.1 General .. 29
 C3.2 Temperature .. 29
 C3.3 Drafts ... 29
 C3.4 Lamp position ... 29
C4 Reference lamps.. 30
 C4.1 Choice of lamps ... 30
 C4.2 Lamp connections .. 30
 C4.2.1 Preheat-start lamps ... 30
 C4.2.2 Instant-start and cold-cathode lamps .. 30
C5 Reference ballasts ... 31
 C5.1 General characteristics, fo = 60Hz .. 31
 C5.2 General characteristics, fo = 25KHz .. 31
 C5.3 Rapid-start, preheat, and instant-start circuit ... 31
 C5.4 Test-circuit 60 Hz reference ballast .. 32
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>C5.5</td>
<td>Test-circuit 25 KHz reference ballast</td>
<td>32</td>
</tr>
<tr>
<td>C5.6</td>
<td>Connection pins</td>
<td>32</td>
</tr>
<tr>
<td>C5.7</td>
<td>Instruments</td>
<td>33</td>
</tr>
<tr>
<td>C6</td>
<td>Test Measurements—High Frequency Commercial Electronic Ballast</td>
<td>34</td>
</tr>
<tr>
<td>C6.1</td>
<td>General</td>
<td>34</td>
</tr>
<tr>
<td>C6.2</td>
<td>Connection of test ballast to lamp pins</td>
<td>34</td>
</tr>
<tr>
<td>C6.3</td>
<td>Rapid-start ballast and program start ballast</td>
<td>34</td>
</tr>
<tr>
<td>C6.4</td>
<td>Instant-start ballast</td>
<td>34</td>
</tr>
<tr>
<td>C6.5</td>
<td>Preheat-start ballast</td>
<td>34</td>
</tr>
<tr>
<td>C7</td>
<td>Ballast output (ballast factor)</td>
<td>35</td>
</tr>
<tr>
<td>C7.1</td>
<td>Electronic ballast output</td>
<td>35</td>
</tr>
<tr>
<td>C7.2</td>
<td>High-current lamps</td>
<td>36</td>
</tr>
<tr>
<td>C7.3</td>
<td>Ballast regulation</td>
<td>36</td>
</tr>
<tr>
<td>C8</td>
<td>Lamp Current</td>
<td>36</td>
</tr>
<tr>
<td>C8.1</td>
<td>Rapid-start</td>
<td>37</td>
</tr>
<tr>
<td>C8.2</td>
<td>Instant-start</td>
<td>37</td>
</tr>
<tr>
<td>C8.3</td>
<td>Crest factor</td>
<td>37</td>
</tr>
<tr>
<td>C8.4</td>
<td>Waveshape determination</td>
<td>38</td>
</tr>
<tr>
<td>C9</td>
<td>Cathode heat</td>
<td>38</td>
</tr>
<tr>
<td>C9.1</td>
<td>Cathode heat—normal operation</td>
<td>39</td>
</tr>
<tr>
<td>C9.2</td>
<td>Cathode heat rapid-start ballast type—dummy load operation</td>
<td>39</td>
</tr>
<tr>
<td>C10</td>
<td>Lamp starting tests using electronic ballasts—lamp starting time vs. starting current</td>
<td>39</td>
</tr>
<tr>
<td>C10.1</td>
<td>Rapid-start lamps ballast, program-start ballast and programmed ballast</td>
<td>40</td>
</tr>
<tr>
<td>C10.2</td>
<td>Cathode heat—dummy load operation for programmed-start and modified rapid-start ballasts</td>
<td>40</td>
</tr>
<tr>
<td>C10.3</td>
<td>Starting Scenarios</td>
<td>40</td>
</tr>
<tr>
<td>C10.3.2</td>
<td>Rapid-start ballast</td>
<td>40</td>
</tr>
<tr>
<td>C10.3.2.1</td>
<td>Preheat time (T1–T2)</td>
<td>40</td>
</tr>
<tr>
<td>C10.3.2.2</td>
<td>Glow current</td>
<td>40</td>
</tr>
<tr>
<td>C10.3.2.3</td>
<td>Glow to arc transition (T2–T3)</td>
<td>40</td>
</tr>
<tr>
<td>C10.3.2.4</td>
<td>Instant-start</td>
<td>40</td>
</tr>
<tr>
<td>C10.3.2.5</td>
<td>Filament resistance cold to hold ratio</td>
<td>40</td>
</tr>
<tr>
<td>C11</td>
<td>Ballast Input</td>
<td>44</td>
</tr>
<tr>
<td>C11.1</td>
<td>Input current</td>
<td>44</td>
</tr>
<tr>
<td>C11.2</td>
<td>Input power</td>
<td>44</td>
</tr>
<tr>
<td>C11.3</td>
<td>Power factor</td>
<td>45</td>
</tr>
<tr>
<td>C11.4</td>
<td>Input current THD (Total Harmonic Distortion)</td>
<td>45</td>
</tr>
<tr>
<td>C11.5</td>
<td>Inrush current (NEMA 410 applies)</td>
<td>46</td>
</tr>
<tr>
<td>C11.6</td>
<td>Indirect verification</td>
<td>46</td>
</tr>
<tr>
<td>C11.7</td>
<td>Inrush current model basics</td>
<td>46</td>
</tr>
<tr>
<td>C11.8</td>
<td>Inrush current model calibration</td>
<td>47</td>
</tr>
<tr>
<td>C11.9</td>
<td>Direct testing measurement</td>
<td>48</td>
</tr>
<tr>
<td>C11.10</td>
<td>BEF (Ballast Efficacy Factor)</td>
<td>49</td>
</tr>
<tr>
<td>C12</td>
<td>Line Transients</td>
<td>49</td>
</tr>
</tbody>
</table>
C13 Conducted emissions testing ... 50
C14 EOL (End of Life) ... 50
 C14.1 Asymmetric pulse test ... 50
 C14.2 Asymmetric power test ... 51
 C14.3 Open filament test ... 52

Figures ... 55

 Figure C-1: Dummy Load Connection .. 56
 Figure C-2: Single Lamp Connection .. 57
 Figure C-3: Rapid Start and Program Start ... 58
 Figure C-4: Reference Ballast ... 59
 Figure C-5: H.F. Reference Ballast .. 60
 Figure C-6: Crest Factor Measurement .. 61
 Figure C-7: Preheat Time .. 62
 Figure C-8: Instant Start ... 63
 Figure C-9: Inrush Current One Ballast Model 64
 Figure C-10: Inrush Current Multiple Ballast Model 65
 Figure C-11: Asymmetric Pulse Test Circuit ... 66
 Figure C-12: Asymmetric Power Test .. 67
 Figure C-13: Open Filament Test (a) ... 68
 Figure C-14: Open Filament Test (b) ... 69
 Figure C-15: Open Filament Lamp Current Detection Test 70

Annex D (Normative) Dimming Ballast Energy Efficiency Test Method 71
1 Scope

1.1 This standard is intended to cover high frequency ballasts which have rated open-circuit voltages of 2000 volts or less, operate the lamp at frequencies between 10 kHz and 500 kHz, and are intended to operate at a supply frequency of 50 Hz or 60 Hz. This comprises ballasts for hot-cathode fluorescent lamps, either switch-start (preheat-start), rapid-start (continuously heated cathodes), modified rapid start, programmed start, or instant start used primarily for lighting purposes. The ballast and lamp combinations covered by this specification are normally intended for use in room ambient temperatures of 10°C to 40°C. At ambient temperatures outside this range, certain special operating characteristics may be required.