American National Standard for Electric Meters—
Code for Electricity Metering

Secretariat:

National Electrical Manufacturers Association

Approved: February 1, 2016

American National Standards Institute, Inc.
NOTICE AND DISCLAIMER

The information in this publication was considered technically sound by the consensus of persons engaged in the development and approval of the document at the time it was developed. Consensus does not necessarily mean that there is unanimous agreement among every person participating in the development of this document.

ANSI standards and guideline publications, of which the document contained herein is one, are developed through a voluntary consensus standards development process. This process brings together volunteers and/or seeks out the views of persons who have an interest in the topic covered by this publication. While NEMA administers the process to promote fairness in the development of consensus, it does not write the document and it does not independently test, evaluate, or verify the accuracy or completeness of any information or the soundness of any judgments contained in its standards and guideline publications.

NEMA disclaims liability for any personal injury, property, or other damages of any nature whatsoever, whether special, indirect, consequential, or compensatory, directly or indirectly resulting from the publication, use of, application, or reliance on this document. NEMA disclaims and makes no guaranty or warranty, expressed or implied, as to the accuracy or completeness of any information published herein, and disclaims and makes no warranty that the information in this document will fulfill any of your particular purposes or needs. NEMA does not undertake to guarantee the performance of any individual manufacturer or seller’s products or services by virtue of this standard or guide.

In publishing and making this document available, NEMA is not undertaking to render professional or other services for or on behalf of any person or entity, nor is NEMA undertaking to perform any duty owed by any person or entity to someone else. Anyone using this document should rely on his or her own independent judgment or, as appropriate, seek the advice of a competent professional in determining the exercise of reasonable care in any given circumstances. Information and other standards on the topic covered by this publication may be available from other sources, which the user may wish to consult for additional views or information not covered by this publication.

NEMA has no power, nor does it undertake to police or enforce compliance with the contents of this document. NEMA does not certify, test, or inspect products, designs, or installations for safety or health purposes. Any certification or other statement of compliance with any health- or safety-related information in this document shall not be attributable to NEMA and is solely the responsibility of the certifier or maker of the statement.

© 2016 National Electrical Manufacturers Association
Approval of an American National Standard requires verification by The American National Standards Institute, Inc. (ANSI) that the requirements for due process, consensus, and other criteria for approval have been met by the standards developer. An American National Standard implies a consensus of those substantially concerned with its scope and provisions. Consensus is established when, in the judgment of the ANSI Board of Standards Review, substantial agreement has been reached by directly, and materially affected interests. Substantial agreement means much more than a simple majority, but not necessarily unanimity. Consensus requires that all views and objections be considered, and that a concerted effort be made toward their resolution.

The existence of an American National Standard does not in any respect preclude anyone, whether s/he has approved the standard or not, from manufacturing, marketing, purchasing, or using products, processes, or procedures not conforming to the standards. It is intended as a guide to aid the manufacturer, the consumer, and the general public.

The American National Standards Institute, Inc., does not develop standards and will in no circumstances give an interpretation of any American National Standard. Moreover, no person shall have the right or authority to issue an interpretation of an American National Standard in the name of the American National Standards Institute, Inc. Requests for interpretations should be addressed to the secretariat or sponsor whose name appears on this title page.

CAUTION NOTICE: This American National Standard may be revised or withdrawn at any time. The procedures of the American National Standards Institute, Inc., require that action be taken periodically to reaffirm, revise, or withdraw this standard. Purchasers of American National Standards may receive current information on all standards by calling or writing the American National Standards Institute, Inc.
FOREWORD (This foreword is not part of American National Standard C12.1-2014)

This version of C12.1 has been modified in several areas in an effort to respond to a changing industry and to improve the clarity of some of the tests. This standard continues to form the basic requirement for all kilowatt-hour metering devices—both electronic and electromechanical. Another standard in this series, ANSI C12.20, provides different test tolerances and a few different tests that are required for higher accuracy meters that adhere to Blondel’s theorem. To offer an option for non-Blondel meter forms, tolerance specifications for 0.5% accuracy class meters have been added to this standard.

Most other specifications have been retained from the previous edition. Changes to the temperature rise test were made to make testing consistent with the tests in the meter socket standard, ANSI C12.7. Section 5, Standards for New and In-Service Performance, and Appendix D were extensively updated to reflect current practices. For several of the tests, specific details for successful tolerance criteria have been modified, and test requirements for bidirectional metering have been added. Some definitions were also added and references to external documents were updated.

The Secretariat of the Accredited Standards Committee on Electricity Metering, C12, is held by the National Electrical Manufacturers Association (NEMA) and the National Institute of Standards and Technology. At the time this standard was processed and approved, the C12 Committee had the following members:

Tom Nelson, Chairman
Paul Orr, Secretary

Organization Represented
Alabama Power Co.
Ameren Services
Baltimore Gas and Electric Co.
Central Hudson Gas & Electric
Consumers Energy
DTE Energy
Duke Energy
Elevate Energy
Elster Solutions, LLC
EnerNex LLC
Florida Power and Light Co.
Future DOS R&D Inc.
General Electric, Energy
Itron, Inc.
Landis+Gyr, Inc
MET Laboratories, Inc.
Milbank Manufacturing Co.
National Institute of Standards And Technology
Northeast Utilities
Oncor Electric Delivery
Pacific Gas and Electric Co
Power Measurements
Public Service Electric & Gas
Radian Research, Inc
SAIC
Schweitzer Engineering Labs
Sensus Metering
Silver Spring Networks
Technology for Energy Corp.
TESCO

Name of Representative
Derl Rhoades
James West
Jim Thurber
Brett Arteta
David Jirkovic
Kostas Tolios
Tim Morgan
Lawrence Kotewa
Scott Weikel
Aaron Snyder
Jim DeMars
Avygdr Moise
Curt Crittenden
Brent Cain
John Voisine
Jim Reed
Shawn Glasgow
Tom Nelson
Gordon Belcher
Brad Johnson
D. Young Nguyen
William Hardy
David Ellis
Shannon Edwards
David Scott
Travis Mooney
Kenny O’Dell
Kam Oza
Steve Hudson
Tom Lawton

© 2016 National Electrical Manufacturers Association
The following members of the C12.1 Committee were actively involved in the revision of this standard:

S. Weikel, Past-Chairman
G. Belcher, Chairman

M. Anderson K. Dimpfl T. Lawton J. Reed
L. Barto S. Edwards H. Millican W. Rose
G. Belcher D. Gunderson T. Mooney A. Snyder
S. Bleier W. Hardy T. Morgan F. Solomon
F. Boudreau M. Hoffman T. Nelson D. Tucker
B. Cain S. Hunter D. Nguyen J. Voisine
C. Crittenden D. Jirikovic D. Nordell S. Weikel
W. Cross B. Johnson K. O’Dell J. West
J. DeMars L. Kotewa A. Rashid L. Wren

In addition, the Editorial Committee for the current Revision of C12.1 includes the following:

William Hardy
Gordon Belcher
Curt Crittenden
Frank Boudreau
Scott Weikel
< This page intentionally left blank. >
CONTENTS

Section 1 SCOPE AND REFERENCES .. 1
 1.1 Scope ... 1
 1.2 References ... 1

Section 2 DEFINITIONS .. 3

Section 3 STANDARDS AND STANDARDIZING EQUIPMENT ... 12
 3.1 General .. 12
 3.2 Traceability paths to the International System of Units, SI ... 12
 3.2.1 Direct transfer.. 12
 3.2.1.2 Independent laboratory ... 12
 3.2.1.3 Meter laboratory transport standard comparison to a NMI ... 12
 3.2.1.4 Indirect transfer .. 12
 3.3 Meter laboratory .. 12
 3.3.1 Laboratory conditions .. 12
 3.3.2 Reference temperature and humidity .. 13
 3.3.3 Laboratory power sources .. 13
 3.4 Meter shop .. 13
 3.5 Laboratory standards .. 13
 3.5.1 Basic reference standards .. 13
 3.5.2 Transport standards .. 13
 3.6 Periodic verification of reference standards ... 13
 3.7 Portable/field/working standard watthour meters .. 13
 3.8 Performance records .. 13
 3.9 Performance requirements for standard watthour meters ... 14
 3.9.1 General test conditions .. 14
 3.9.1.1 Test voltage ... 14
 3.9.1.2 Test current .. 14
 3.9.1.3 Test phase angle ... 14
 3.9.1.4 Test frequency .. 14
 3.9.1.5 Waveform distortion ... 14
 3.9.1.6 Ambient temperature .. 14
 3.9.1.7 External magnetic field .. 14
 3.9.2 Accuracy tests for portable and reference standards ... 15
 3.9.2.1 Insulation .. 15
 3.9.2.2 Accuracy specification for the effect of variation of voltage and current .. 15

Section 4 ACCEPTABLE PERFORMANCE OF NEW TYPES OF ELECTRICITY METERS AND ASSOCIATED EQUIPMENT ... 16
 4.1 General .. 16
 4.1.1 Acceptable meters .. 16
 4.1.2 Adequacy of testing laboratory .. 16
 4.1.3 Retesting of new meter type .. 16
 4.1.4 Test documentation .. 16
 4.1.5 Test device .. 16

© 2016 National Electrical Manufacturers Association
Section 5 STANDARDS FOR NEW AND IN-SERVICE PERFORMANCE 59

5.0 General principles ... 59

5.0.1 Purpose .. 59

5.0.1.1 New metering devices .. 59

5.0.1.2 In-service metering devices 59

5.0.2 Tests ... 59

5.0.2.1 As-found tests .. 59

5.0.2.2 As-left tests .. 59

5.0.2.3 Metering devices removed from service 59

5.0.2.4 Metering devices returned to service 60

5.0.3 Performance Tests .. 60

5.0.3.1 Objectives ... 60

5.0.3.2 New metering device acceptance testing 60

5.0.3.3 In-service metering devices 60

5.0.3.4 Test plans ... 60

5.0.3.4.1 Periodic interval plan .. 60

5.0.3.4.2 Variable-interval plan .. 61

5.0.3.4.3 Statistical sampling plan .. 61

5.0.3.4.4 Corrective action for any metering device or group of metering devices failing to meet performance criteria 61

5.0.3.5 Test records .. 61

5.1 Watthour meters .. 62

5.1.1 Accuracy requirements ... 62
5.1.1.1 Test loads ... 62
5.1.1.2 Acceptable performance .. 62
5.1.1.3 Adjustment limits .. 62
5.1.1.4 Acceptable performance for electronic registers 62
5.1.2 Tests .. 62
 5.1.2.1 New meters and As-found tests 62
 5.1.2.2 As-left tests ... 62
 5.1.2.3 Meters returned to service 62
5.1.3 Test plans .. 63
 5.1.3.1 Periodic interval plan ... 63
 5.1.3.2 Performance monitoring of new types of meters ... 63
5.1.4 Determination of average percentage registration 63
 5.1.4.1 Method 1 .. 63
 5.1.4.2 Method 2 .. 63
 5.1.4.3 Method 3 .. 63
 5.1.4.4 Method 4 .. 63
5.2 Instrument transformers, magnetic (external to meter) 64
 5.2.1 Pre-installation tests ... 64
 5.2.2 Instrument transformers removed from service 64
 5.2.3 Performance tests .. 64
 5.2.3.1 Burden test ... 64
 5.2.3.2 Secondary voltage test 64
 5.2.4 Inspection .. 64
5.3 Coupling capacitor voltage transformers (external to meter) 65
 5.3.1 Performance tests .. 65
5.4 Integrated communication devices 65
 5.4.1 Performance tests .. 65
5.5 Service switches (integrated and external to meter) 65
 5.5.1 Performance tests .. 65
5.6 Demand and interval registers (integrated) 65
 5.6.1 Accuracy requirements .. 65
 5.6.1.1 Acceptable performance for new demand or interval registers 65
 5.6.1.2 In-Service acceptable performance 65
 5.6.1.3 Test points ... 66
 5.6.1.4 Adjustment limits ... 66
 5.6.1.5 Performance limits .. 66
5.7 Other energy measurement devices not already listed (integrated and external to meter) .. 66
 5.7.1 Pulse Recorder accuracy requirements 66
 5.7.1.1 Acceptable performance for pulse recorders 66
5.8 Other non-energy measurement devices in a metering device circuit (integrated and external to meter) .. 66

Section 6 AUXILIARY PULSE DEVICES FOR ELECTRICITY METERING 67
6.1 General .. 67
 6.1.1 Information to be shown on pulse initiator 67
 6.1.2 Information to be shown on pulse amplifier or relay ... 67
 6.1.3 Information to be shown on pulse totalizers 67
6.2 Tests to be applied .. 67
6.3 Performance requirements .. 68
 6.3.1 Test conditions ... 68
 6.3.2 Initial conditions .. 68
 6.3.3 Mechanical load .. 68
 6.3.4 Insulation .. 68

© 2016 National Electrical Manufacturers Association
APPENDIX A

A.1 Measurement of power ... 72
A.1.1 Introduction ... 72
A.1.2 Blondel's theorem .. 72
A.1.3 Direct-current circuits .. 72
A.1.3.1 Two-wire direct-current circuits ... 72
A.1.3.2 Three-wire direct-current circuits ... 72
A.1.3.3 Ammeter and voltmeter method ... 72
A.1.4 Single-phase alternating-current circuits ... 72
A.1.4.1 Single-phase two-wire circuits ... 72
A.1.4.2 Single-phase three-wire circuits ... 73
A.1.5 Two-phase circuits ... 73
A.1.5.1 Two-phase three-wire circuits ... 73
A.1.5.2 Two-phase four-wire circuits ... 73
A.1.5.3 Two-phase five-wire Circuits ... 73
A.1.5.4 Balanced two-phase circuits ... 73
A.1.6 Three-phase circuits ... 73
A.1.6.1 Three-wattmeter method ... 73
A.1.6.2 Two-wattmeter method .. 73
A.1.6.3 Balanced three-phase circuits ... 73
A.2 Measurement of Energy ... 73
A.2.1 Basic considerations .. 73
A.2.1.1 Voltage-coil connection ... 74
A.2.1.2 Application of Blondel's theorem .. 74
A.2.1.3 Watthour meter stator .. 74
A.2.2 Direct-current or single-phase circuits .. 74
A.2.2.1 Two-wire direct-current and single-phase circuits .. 74
A.2.2.2 Three-wire direct-current and single-phase circuits ... 74
A.2.2.3 Single-phase three-wire circuits with balanced voltages .. 74
A.2.2.4 Large-capacity or high-voltage direct-current meters .. 74
A.2.2.5 Large-capacity or high-voltage alternating-current meters .. 75
A.2.3 Open wye circuits .. 75
A.2.4 Two-phase circuits ... 75
A.2.4.1 Two-phase three-wire circuits ... 75
A.2.4.2 Two-phase four- or five-wire circuits ... 75
A.2.4.3 Two-phase five-wire circuits with balanced voltages ... 75
A.2.5 Three-phase circuits, all types ... 75
A.2.5.1 Methods comparable to power measurements ... 75
A.2.6 Three-phase, three-wire circuits ... 76
A.2.6.1 Two-stator method .. 76
A.2.6.2 Three-stator method ... 76
A.2.6.3 Balanced voltage and load ... 76
A.2.7 Three-phase four-wire wye circuits ... 76
A.2.7.1 Three-stator four-wire wye meter .. 76
A.2.7.2 Two-stator four-wire wye meter .. 76
A.2.8 Three-phase four-wire delta circuits ... 76
A.2.8.1 Possible methods of metering ... 76
A.2.8.2 Three-stator four-wire delta meter .. 76
A.2.8.3 Two-stator four-wire delta meter .. 77
A.2.9 Three-phase seven-wire double wye-connected circuits 77
A.2.9.1 Three single-phase three-wire stators .. 77
A.2.10 Basic meter design considerations ... 77
A.2.11 Factors affecting induction meter accuracy .. 77
A.2.11.1 Light loads ... 77
A.2.11.2 Variations in voltage .. 78
A.2.11.3 Variations in power factor ... 78
A.2.11.4 Variations in frequency .. 78
A.2.11.5 Variations in temperature ... 78
A.2.11.6 External magnetic fields ... 78
A.2.11.7 Load range ... 78
A.2.11.8 Surges ... 78
A.2.11.9 Adverse environmental conditions .. 79

A.3 Measurement of power factor .. 79
A.3.1 Single-phase two-wire circuits ... 79
A.3.2 Single-phase and polyphase circuits ... 79
A.3.3 Balanced three-phase three-wire circuits ... 79
A.3.4 System power factor .. 79
A.3.5 Interval power factor ... 80

A.4 Measurement of quadergy (varhours) .. 80
A.4.1 Electromechanical meters .. 80
A.4.2 Electronic meters .. 80

APPENDIX B ... 81
B.1 General ... 81
B.2 Final authority ... 81
B.2.1 Electrical units ... 81
B.2.1.1 “The unit of electrical resistance shall be the ohm, which is equal to one thousand million units of resistance in the centimeter-gram-second system of electromagnetic units.” .. 81
B.2.1.2 “The unit of electric current shall be the ampere, which is one-tenth of the unit of current in the centimeter-gram-second system of electromagnetic units.” .. 81
B.2.1.3 “The unit of electromotive force (EMF) and of electric potential shall be the volt, which is the electromotive force that, steadily applied to a conductor whose resistance is one ohm, will produce a current of one ampere.” .. 81
B.2.1.4 “The unit of electric quantity shall be the coulomb, which is the quantity of electricity transferred by a current of one ampere in one second.” .. 81
B.2.1.5 “The unit of electrical capacitance shall be the farad, which is the capacitance of a capacitor which is charged to a potential of one volt by one coulomb of electricity.” .. 81
B.2.1.6 “The unit of electrical inductance shall be the henry, which is the inductance in a circuit such that an electromotive force of one volt is induced in the circuit by variation of an inducing current at the rate of one ampere per second.” .. 82
B.2.1.7 “The unit of power shall be the watt, which is equal to ten million units of power in the centimeter-gram-second system, and which is the power required to cause an unvarying current of one ampere to flow between points differing in potential by one volt.” 82
B.2.1.8 “The units of energy shall be (a) the joule, which is equivalent to the energy supplied by a power of one watt operating for one second, and (b) the kilowatt hour, which is equivalent to the
TABLES

Table 1a Portable and Reference Standards Percent Errors ... 15
Table 1b Portable and Reference Maximum Percent Errors @ 23°C .. 15
Table 2 Table of Failures Based on the Number of Meters Tested ... 19
Table 3 List of Tests ... 21
Table 4 Starting Load Test ... 22
Table 5 Load Performance Test ... 22
Table 6 Effect of Variation of Power Factor for Single-Element Meters ... 23
Table 7 Effect of Power Factor for Two-Element Meters: ... 24
Table 8 Effect of Variation of Power Factor for Two-Element Three-Phase Four-Wire Wye Meters... 25
Table 9 Effect of Variation of Power Factor for Three-Element Three-Phase Four-Wire Wye Meters 26
Table 10 Effect of Variation of Voltage .. 27
Table 11 Effect of Variation of Voltage on Solid-State Auxiliary Devices .. 27
Table 12 Effects of Variation of Frequency .. 28
Table 14 Equality of Current Circuits in the Three-Wire Element for Multi-Element................................ 29
Table 15 Equality of Current Circuits between Elements for Multi-Element Meters.......................... 30
Table 16 Temperature-Rise Test Specifications .. 31
Table 17 Effect of Internal Heating .. 36
Table 18 Effect of Tilt ... 37
Table 19 Test for Independence of Elements in Two-Element Meters .. 39
Table 20 Test for Independence of Elements in Three-Element Meters ... 40
Table 21 Effect of External Magnetic Field .. 43
Table 22 Effect of Variation of Ambient Temperature .. 44
Table 23 Effect of Temporary Overloads on Accuracy .. 45
Table 24 Effect of Current Surge in Ground Conductor ... 46
Table 25 Test Modes, Voltage, and Application for Each External Connection Group—Oscillatory Test 49
Table 26 Performance Test—Pulse Devices ... 68

FIGURES

Figure 1 Location of Temperature Detectors ... 32
Figure 2 Dimensions for Jumper Bars of Simulated Meter Temperature-Rise 33
Figure 3 Dimensions for Jumper Bars of Simulated Meter Temperature-Rise Test for Single-Phase and Polyphase Meters (Maximum Rating 201 – 320 A Rating) ... 34
Figure 4 Dimensions for Jumper Bars of Simulated Meter Temperature-Rise Test for Single-Phase and Polyphase Meters (Maximum Rating 201 – 320 A Rating) ... 35
Figure 5 Electrical Fast Transient/Burst Test # 25 .. 47
Figure 6 Electrical Fast Transient/Burst Test # 25 .. 48
Figure 7 Typical Test Layout for Radiated Susceptibility—Test 26 and Radiated and Conducted Emissions—Test 27. Reference 4.7.3.12.1 and 4.7.3.13 .. 51
Figure 8 Typical Wiring Detail for Self-Contained Meters for Radiated Susceptibility— Test 26 And Radiated and Conducted Emissions— Test 27. Reference 4.7.3.12.1 and 4.7.3.13 .. 52
Figure 9 Typical Wiring Detail for Transformer Rated Meters for Radiated Susceptibility— Test 26 And Radiated and Conducted Emissions— Test 27. Reference 4.7.3.12.1 and 4.7.3.13 .. 53
Figure 10 Typical GTEM Test Layout for Radiated Susceptibility Test—Reference 4.7.3.12 54
Figure 11 Sunlight Interference Test .. 70
Figure 12 Variable Angles Sunlight Interference Test .. 71
Section 1
SCOPE AND REFERENCES

1.1 Scope

This code establishes acceptable performance criteria for new types of ac watthour meters, demand meters, demand registers, pulse devices, and auxiliary devices. It describes acceptable in-service performance levels for meters and devices used in revenue metering. It also includes information on related subjects, such as recommended measurement standards, installation requirements, test methods, and test schedules. This Code for Electricity Metering is designed as a reference for those concerned with the art of electricity metering, such as utilities, manufacturers, and regulatory bodies.