ANSI/IEC 60974-5-2009

American National Standard for Arc Welding Equipment

Part 5: Wire Feeders
NOTICE AND DISCLAIMER

The information in this publication was considered technically sound by the consensus of persons engaged in the development and approval of the document at the time it was developed. Consensus does not necessarily mean that there is unanimous agreement among every person participating in the development of this document.

The National Electrical Manufacturers Association (NEMA) standards and guideline publications, of which the document contained herein is one, are developed through a voluntary consensus standards development process. This process brings together volunteers and/or seeks out the views of persons who have an interest in the topic covered by this publication. NEMA does not write the document and it does not independently test, evaluate, or verify the accuracy or completeness of any information or the soundness of any judgments contained in its standards and guideline publications.

NEMA disclaims liability for any personal injury, property, or other damages of any nature whatsoever, whether special, indirect, consequential, or compensatory, directly or indirectly resulting from the publication, use of, application, or reliance on this document. NEMA disclaims and makes no guaranty or warranty, expressed or implied, as to the accuracy or completeness of any information published herein, and disclaims and makes no warranty that the information in this document will fulfill any of your particular purposes or needs. NEMA does not undertake to guarantee the performance of any individual manufacturer or seller’s products or services by virtue of this standard or guide.

In publishing and making this document available, NEMA is not undertaking to render professional or other services for or on behalf of any person or entity, nor is NEMA undertaking to perform any duty owed by any person or entity to someone else. Anyone using this document should rely on his or her own independent judgment or, as appropriate, seek the advice of a competent professional in determining the exercise of reasonable care in any given circumstances. Information and other standards on the topic covered by this publication may be available from other sources, which the user may wish to consult for additional views or information not covered by this publication.

NEMA has no power, nor does it undertake to police or enforce compliance with the contents of this document. NEMA does not certify, test, or inspect products, designs, or installations for safety or health purposes. Any certification or other statement of compliance with any health or safety-related information in this document shall not be attributable to NEMA and is solely the responsibility of the certifier or maker of the statement.
Approval of an American National Standard requires verification by ANSI that the requirements for due process, consensus, and other criteria for approval have been met by the standards developer.

Consensus is established when, in the judgment of the ANSI Board of Standards Review, substantial agreement has been reached by directly and materially affected interests. Substantial agreement means much more than a simple majority, but not necessarily unanimity. Consensus requires that all views and objections be considered, and that a concerted effort be made toward their resolution.

The use of American National Standards is completely voluntary; their existence does not in any respect preclude anyone, whether he has approved the standards or not, from manufacturing, marketing, purchasing, or using products, processes, or procedures not conforming to the standards.

The American National Standards Institute does not develop standards and will in no circumstances give an interpretation of any American National Standard. Moreover, no person shall have the right or authority to issue an interpretation of an American National Standard in the name of the American National Standards Institute. Requests for interpretations should be addressed to the secretariat or sponsor whose name appears on the title page of this standard.

Caution Notice: This American National Standard may be revised or withdrawn at any time. The procedures of the American National Standards Institute require that action be taken periodically to reaffirm, revise, or withdraw this standard. Purchasers of American National Standards may receive current information on all standards by calling or writing the American National Standards Institute.

Published by

National Electrical Manufacturers Association

1300 North 17th Street, Rosslyn, VA 22209

© Copyright 2009 by National Electrical Manufacturers Association

All rights reserved including translation into other languages, reserved under the Universal Copyright Convention, the Berne Convention for the Protection of Literary and Artistic Works, and the International and Pan American Copyright Conventions.

No part of this publication may be reproduced in any form, in an electronic retrieval system or otherwise, without the prior written permission of the publisher.

Printed in the United States of America
This page intentionally left blank.
FOREWORD FOR U.S. ADOPTION

This American National Standard is an adoption of IEC 60974-5 edition 2, *Arc welding equipment—Part 5: Wire feeders*, and was developed and approved in accordance with procedures set forth by the American National Standards Institute. It is the intention that this American National Standard be a standalone document, replacing the use of IEC 60974-5 in the U.S. As such, any reference in this standard to an IEC 60974 part is understood to mean a reference to the equivalent ANSI/IEC 60974 part, where it exists.

This standard contains all the original text as-is from IEC 60974-5, edition 2, in addition to a number of U.S. Differences to the IEC standard that were identified by Accredited Standards Committee W1, *Requirements for Apparatus Designed for Use in Arc Welding, Plasma Arc Cutting, and Allied Processes*. Each U.S. Difference is found both in a compilation of U.S. Differences following this foreword, and inserted in the appropriate place(s) in the standard relating to the difference. Each insertion is in red text and is marked on its left by three lines (two thin, one thick). Each U.S. Difference is identified with the following format:

[Clause/Subclause Number]DV.[Number of Difference for the Given Clause/Subclause]

Following this format, the example 17.1DV.3 signifies that it is the third U.S. Difference to subclause 17.1.

Suggestions for the improvement of this standard are welcome and should be submitted to the Secretariat of Accredited Standards Committee W1 as follows:

Greg Winchester, ASC W1 Secretary
c/o National Electrical Manufacturers Association
1300 North 17th Street, Suite 1752
Rosslyn, VA 22209
Fax 703-841-3399
Email gre_winchester@nema.org

This standard was processed and approved by the Accredited Standards Committee W1. Committee approval does not necessarily imply that all Committee members voted for its approval. At the time this standard was approved, Accredited Standards Committee W1 consisted of the following members:

<table>
<thead>
<tr>
<th>Organization Represented</th>
<th>Name of Representative</th>
</tr>
</thead>
<tbody>
<tr>
<td>American Welding Society</td>
<td>Andrew Davis – principal</td>
</tr>
<tr>
<td></td>
<td>Dick Holdren – alternate</td>
</tr>
<tr>
<td>CenterLine (Windsor) Limited</td>
<td>David Beneteau</td>
</tr>
<tr>
<td>CSA International</td>
<td>Andrew Krumins</td>
</tr>
<tr>
<td>ESAB Welding and Cutting</td>
<td>Charles Aimar</td>
</tr>
<tr>
<td>Hypertherm Inc.</td>
<td>Tony Zeller – principal</td>
</tr>
<tr>
<td></td>
<td>Bill Lynn – alternate</td>
</tr>
<tr>
<td>Lincoln Electric Company</td>
<td>Frank Stupczy – principal</td>
</tr>
<tr>
<td></td>
<td>Gary Mikitin – alternate</td>
</tr>
<tr>
<td>Miller Electric Manufacturing Company</td>
<td>David Werba – principal</td>
</tr>
<tr>
<td></td>
<td>Terry Christianson-Plato – alternate</td>
</tr>
<tr>
<td></td>
<td>Mike Madsen – alternate</td>
</tr>
<tr>
<td>Northeast Product Safety Society</td>
<td>John Freudenberg</td>
</tr>
<tr>
<td>Wayne Hoffman – Consultant / U.S. Technical Advisor, IEC TC 26</td>
<td>Wayne Hoffman</td>
</tr>
</tbody>
</table>
CONTENTS

FOREWORD.. 9

1 Scope.. 11
2 Normative references .. 11
3 Terms and definitions ... 12
4 Environmental conditions ... 13
5 Tests .. 13
 5.1 Test conditions ... 13
 5.2 Measuring instruments ... 13
 5.3 Conformity of components .. 13
 5.4 Type tests ... 13
 5.5 Routine tests .. 14
6 Protection against electric shock ... 14
 6.1 Insulation ... 14
 6.2 Protection against electric shock in normal service (direct contact)... 14
 6.2.1 Protection provided by the enclosure ... 14
 6.2.2 Capacitors ... 15
 6.2.3 Automatic discharge of input capacitors .. 15
 6.3 Protection against electric shock in case of a fault condition (indirect contact)...................................... 15
 6.3.1 Isolation of the supply circuit and the welding circuit .. 15
 6.3.2 Isolation of the welding circuit from the frame .. 15
 6.3.3 Internal conductors and connections ... 15
 6.4 Rated supply voltage ... 15
 6.5 Protective provisions .. 15
 6.6 Overcurrent protection of the supply circuit .. 16
 6.7 Cable anchorage ... 16
 6.8 Auxiliary power output .. 16
 6.9 Inlet opening .. 16
 6.10 Control circuits .. 16
 6.11 Insulation of hanging means .. 16
7 Liquid cooling system .. 16
8 Shielding gas supply .. 17
9 Thermal requirements .. 17
10 Mechanical provisions ... 18
 10.1 Wire feeder .. 18
 10.2 Enclosure strength ... 18
 10.3 Handling means .. 18
 10.4 Drop withstand ... 18
 10.5 Tilting stability ... 18
 10.6 Filler wire supply .. 18
 10.6.1 Filler wire supply mounting .. 18
 10.6.2 Wire spool retaining device .. 18
10.6.3 Filler wire over-run..19
10.7 Feeding..19
10.8 Protection against mechanical hazards...19

11 Rating plate..20
11.1 General ..20
11.2 Description ...20
11.3 Contents..21

12 Indication of wire-feed speed...21

13 Instructions and markings...21
13.1 Instructions..21
13.2 Markings..22

Annex A (normative) Determination of the variation in wire-feed speed......................23
Annex B (informative) Example for a rating plate of a stand-alone wire feeder25

Figure 1 – Principle of the rating plate of stand-alone wire feeder20

Table 1 – Minimum degree of protection ..14
FOREWORD

1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international cooperation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as “IEC Publication(s)”). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and nongovernmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.

2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees.

3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user.

4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter.

5) IEC provides no marking procedure to indicate its approval and cannot be rendered responsible for any equipment declared to be in conformity with an IEC Publication.

6) All users should ensure that they have the latest edition of this publication.

7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications.

8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication.

9) Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of patent rights. IEC shall not be held responsible for identifying any or all such patent rights.

International Standard IEC 60974-5 has been prepared by IEC technical committee 26: Electric welding.

This second edition cancels and replaces the first edition published in 2002 and constitutes a technical revision.

This edition includes the following significant technical changes with respect to the previous edition:

- changes induced by the publication of IEC 60974-1, edition 3;
- IEC 60974-5 is not applicable to spool-on torches that IEC 60974-7 covers (see Clause 1);
- IEC 60974-5 is not applicable to wire feeders which are designed for use by laymen that IEC 60974-6 covers (see Clause 1);
- wire feeders with degree of protection IP23S may be stored, but are not intended to be used outside during precipitation unless sheltered (see 6.2.1 and Table 1);
– withdrawal of voltage limitation for input supply network (see 6.4);
– protective connection provision for welding circuit (see 6.5);
– addition of tilting stability (see 10.5);
– clarification of the definition of the thermal requirement test. The manufacturer gives the
 maximum load (see Clause 9);
– introduction of rating plate layout for stand-alone wire feeder (see 11.2);
– introduction of new combined symbols for liquid/gas input and output based on IEC 60974-1
 (see 13.2).

The text of this standard is based on the following documents:

<table>
<thead>
<tr>
<th>FDIS</th>
<th>Report on voting</th>
</tr>
</thead>
<tbody>
<tr>
<td>26/364/FDIS</td>
<td>26/368/RVD</td>
</tr>
</tbody>
</table>

Full information on the voting for the approval of this standard can be found in the report on
voting indicated in the above table.

This publication has been drafted in accordance with the ISO/IEC Directives, Part 3.

This standard shall be used in conjunction with IEC 60974-1 and IEC 60974-7.

The list of all the parts of IEC 60974, under the general title Arc welding equipment, can be found
on the IEC web site.

The committee has decided that the contents of this publication will remain unchanged until the
maintenance result date indicated on the IEC web site under “http://webstore.iec.ch” in the data
related to the specific publication. At this date, the publication will be

• reconfirmed;
• withdrawn;
• replaced by a revised edition, or
• amended.

Foreword

Modify the foreword by adding the following:

The numbering system in this standard uses a space instead of a comma to indicate thousands
and uses a comma instead of a period to indicate a decimal point. For example, 1,000 means
1,000 and 1,01 means 1.01.
1 Scope

This part of IEC 60974 specifies safety and performance requirements for industrial and professional equipment used in arc welding and allied processes to feed filler wire.

The wire feeder may be a stand-alone unit which may be connected to a separate welding power source or one where the welding power source and the wire feeder are housed in a single enclosure.

The wire feeder may be suitable for manually or mechanically guided torches.

This part of IEC 60974 is not applicable to spool-on torches that are covered by IEC 60974-7.

This part of IEC 60974 is not applicable to wire feeders which are designed for use by laymen and are covered by IEC 60974-6.

NOTE 1 Typical allied processes are, for example, plasma arc cutting and arc spraying.

NOTE 2 This standard does not include electromagnetic compatibility (EMC) requirements.