ANSI C84.1-20XX
American National Standard for
Electric Power Systems and Equipment—
Voltage Ratings (60 Hertz)
Secretariat:
National Electrical Manufacturers Association
Approved:
American National Standards Institute, Inc.

45 **1 Scope and Purpose**

46 47 **1.1 Scope**

This standard establishes nominal voltage ratings and operating tolerances for 60Hz electric power systems above 100 volts. It also makes recommendations to other standardizing groups with respect to voltage ratings for equipment used on power systems and for utilization devices connected to such systems.

53

61 62

63

65 66

67

68

69

70

71

72

73

74

75

76 77

54 This standard includes preferred voltage ratings up to and including 1200 kV maximum system voltage, 55 as defined in the standard.

In defining maximum system voltage, voltage transients and temporary overvoltages caused by abnormal
system conditions such as faults, load rejection, and the like are excluded. However, voltage transients
and temporary overvoltages may affect equipment operating performance and are considered in
equipment application.

1.2 Purpose

64 The purposes of this standard are to:

- a) Promote a better understanding of the voltages associated with power systems and utilization equipment to achieve overall practical and economical design and operation
 - b) Establish uniform nomenclature in the field of voltages
- c) Promote standardization of nominal system voltages and ranges of voltage variations for operating systems
- d) Promote standardization of equipment voltage ratings and tolerances
- e) Promote coordination of relationships between system and equipment voltage ratings and tolerances
 - f) Provide a guide for future development and design of equipment to achieve the best possible conformance with the needs of the users
- g) Provide a guide, with respect to choice of voltages, for new power system undertakings and for changes in older ones

7879 2 Definitions

80
 81 **2.1 system or power system:** The connected system of power apparatus used to deliver electric
 82 power from the source to the utilization device. Portions of the system may be under different ownership,
 83 such as that of a supplier or a user.

85 2.2 system voltage terms: As used in this document, all voltages are rms phase-to-phase, except
 86 that the voltage following a slant-line is an rms phase-to-neutral voltage.
 87

88 2.2.1 system voltage: The root-mean-square (rms) phase-to-phase voltage of a portion of an
 89 alternating-current electric system. Each system voltage pertains to a portion of the system that is
 90 bounded by transformers or utilization equipment.

91
 92 2.2. nominal system voltage: The voltage by which a portion of the system is designated, and to
 93 which certain operating characteristics of the system are related. Each nominal system voltage pertains to
 94 a portion of the system bounded by transformers or utilization equipment.

NOTE: The nominal voltage of a system is near the voltage level at which the system normally operates. To allow for
 operating contingencies, systems generally operate at voltage levels about 5–10% below the maximum system
 voltage for which system components are designed.

2.2.3 maximum system voltage: The highest system voltage that occurs under normal operating
 conditions, and the highest system voltage for which equipment and other components are designed for
 continuous satisfactory operation without derating of any kind.

service voltage: The voltage at the point where the electrical system of the supplier and the electrical system of the user are connected.

107 **2.4 utilization voltage:** The voltage at the line terminals of utilization equipment.

2.4.1 nominal utilization voltage: The voltage rating of certain utilization equipment used on the system.

111 112 NOTE: The nominal system voltages contained in table 1 apply to all parts of the system, both of the supplier and of 113 the user. The ranges are given separately for service voltage and for utilization voltage, these normally being at 114 different locations. It is recognized that the utilization voltage is normally somewhat lower than the service voltage. In 115 deference to this fact, and the fact that integral horsepower motors, or air conditioning and refrigeration equipment, or both, may constitute a heavy concentrated load on some circuits, the rated voltages of such equipment and of motors 116 117 and motor-control equipment are usually lower than nominal system voltage. This corresponds to the range of 118 utilization voltages in table 1. Other utilization equipment is generally rated at nominal system voltage. 119

120 **2.5 voltage level:** Voltage level is a generalized term that is synonymous with the rms voltage 121 averaged over 10 minutes.

3 System Voltage Classes

- 125 **3.1** Low Voltage (LV): A class of nominal system voltages 1000 volts or less.
- 126
 127 3.2 Medium Voltage (MV): A class of nominal system voltages greater than 1000 volts and less than
 128 100 kV.
- High Voltage (HV): A class of nominal system voltages equal to or greater than 100 kV and equal to or less than 230 kV.
- **3.4** Extra-High Voltage (EHV): A class of nominal system voltages greater than 230 kV but less than
 1000 kV.
- 136 **3.5 Ultra-High Voltage (UHV):** A class of nominal system voltages equal to or greater than 1000 kV.

1374Selection of Nominal System Voltages

138

106

108

122

124

When a new system is to be built or a new voltage level introduced into an existing system, one (or more)
of the preferred nominal system voltages shown in boldface type in table 1 should be selected. The
logical and economical choice for a particular system among the voltages thus distinguished will depend
upon a number of factors, such as the character and size of the system.

- 143
- 144 Other system voltages that are in substantial use in existing systems are shown in lightface type.
- Economic considerations will require that these voltages stay in use, and in some cases, may require that their use be extended. However, these voltages generally should not be utilized in new systems or in new voltage levels in existing systems.
- 148

The 4160V, 6900V, and 13,800V three-wire systems are particularly suited for industrial systems that supply predominantly polyphase loads, including large motors, because these voltages correspond to the standard motor ratings of 4000 volts, 6600 volts, and 13,200 volts, as is explained further in 2.4.1. It is not intended to recommend the use of these system voltages for utility primary distribution, for which four-wire voltages of 12470Y/7200 volts or higher should be used.

5 Explanation of Voltage Ranges

157 158 For any specific nominal system voltage, the voltages actually existing at various points at various times on any power system, or on any group of systems, or in the industry as a whole, usually will be distributed 159 160 within the maximum and minimum voltages shown in table 1. The design and operation of power systems and the design of equipment to be supplied from such systems should be coordinated with respect to 161 162 these voltages so that the equipment will perform satisfactorily in conformance with product standards 163 throughout the range of actual utilization voltages that will be encountered on the system. To further this 164 objective, this standard establishes, for each nominal system voltage, two ranges for service voltage and utilization voltage variations, designated as Range A and Range B, the limits of which are given in table 1. 165 These limits shall apply to sustained voltage levels and not to momentary voltage excursions that may 166 result from such causes as switching operations, motor starting currents, and the like. 167 168

169 5.1 Application of Voltage Ranges170

171 **5.1.1 Range A—Service Voltage**

Electric supply systems shall be so designed and operated that most service voltages will be within the
 limits specified for Range A. The occurrence of service voltages outside of these limits should be
 infrequent.

177 5.1.2 Range A—Utilization Voltage

User systems shall be so designed and operated that with service voltages within Range A limits, most
utilization voltages will be within the limits specified for this range.

182 Utilization equipment shall be designed and rated to give fully satisfactory performance throughout this 183 range.

184185 5.1.3 Range B—Service and Utilization Voltages

Range B includes voltages above and below Range A limits that necessarily result from practical design
and operating conditions on supply or user systems, or both. Although such conditions are a part of
practical operations, they shall be limited in extent, frequency, and duration. When they occur, corrective
measures shall be undertaken within a reasonable time to improve voltages to meet Range A
requirements.

192

Insofar as practicable, utilization equipment shall be designed to give acceptable performance in the
 extremes of the range of utilization voltages, although not necessarily as good performance as in Range A.

196 5.1.4 Outside Range B—Service and Utilization Voltages

197

198 It should be recognized that because of conditions beyond the control of the supplier or user, or both,
199 there will be infrequent and limited periods when sustained voltages outside Range B limits will occur.
200 Utilization equipment may not operate satisfactorily under these conditions, and protective devices may
201 operate to protect the equipment.

201

When voltages occur outside the limits of Range B, prompt, corrective action shall be taken. The urgency
 for such action will depend upon many factors, such as the location and nature of the load or circuits
 involved, and the magnitude and duration of the deviation beyond Range B limits.

206

207

208

210 6 Voltage Ratings for 60Hz Electric Equipment

2 6.1 General

This standard includes information, as given in Annex C, to assist in the understanding about the effects of unbalanced voltages on utilization equipment applied in polyphase systems.

216217 6.2 Recommendation

219 Insofar as practicable, whenever electric equipment standards are revised:

- a) Nameplate voltage ratings should be changed as needed in order to provide a consistent relationship between the ratings for all equipment of the same general class and the nominal system voltage on the portion of the system on which they are designed to operate.
- b) The voltage ranges for which equipment is designed should be changed as needed in order to be in accordance with the ranges shown in table 1.

The voltage ratings in each class of utilization equipment should be either the same as the nominal

system voltages or less than the nominal system voltages by the approximate ratio of 115 to 120.

229

211 212 213

218

220 221

222

223

224

 Table 1

 Standard Nominal System Voltages and Voltage Ranges (Preferred system voltages in bold-face type)

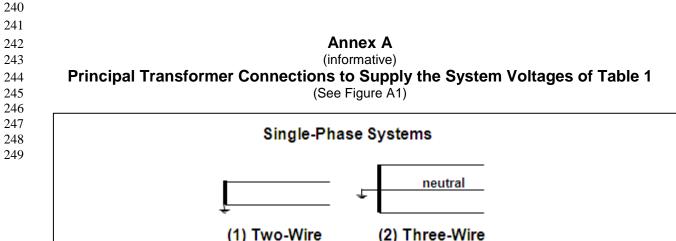
ш	Nominal System Voltage			Nominal Utilization	(Note b)			Voltage Range B (Note b)		
VOLTAGE CLASS	(Note a)			Voltage (Note h)	Maximum Minimum		Maximum Minimum			
	2-wire	3-wire	4-wire	2-wire 3-wire 4-wire	Utilization and Service Voltage (Note c)	Service Voltage	Utilization Voltage	Utilization and Service Voltage	Service Voltage	Utilization Voltage
	Single-Phase Systems									
	120	120/240		115 115/230	126 126/252	114 114/228	108 108/216	127 127/254	110 110/220	104 104/208
						Three-Phase Systems				
Φ			208Y/120	200	218Y/126	197Y/114	187Y/108	220Y/127	191Y/110	180Y/104
Low Voltage		240	(Note d) 240/120	230/115 230	252/126 252	228/114 228	216/108 216	254/127 254	(Note i) 220/110 220	(Note i) 208/104 208
Ň			480Y/277	460Y/266	504Y/291	456Y/263	432Y/249	508Y/293	440Y/254	416Y/240
		480		460	504	456	432	508	440	416
		600		575	630	570	540	635	550	520
		(Note e)			(Note e)			(Note e)		
			690Y/400	660	720	655	630	725	635	610
		2400			2520	2340	2160	2540	2280	2080
			4160Y/2400		4370/2520	4050Y/2340	3740Y/2160	4400Y/2540	3950Y/2280	3600Y/2080
		4160			4370	4050	3740	4400	3950	3600
		4800			5040	4680	4320	5080	4560	4160
		6900			7240	6730	6210	7260	6560	5940
			8320Y/4800		8730Y/5040	8110Y/4680		8800Y/5080	7900Y/4560	
			12000Y/6930		12600Y/7270	11700Y/6760		12700Y/7330	11400Y/6580	(Note f)
			12470Y/7200 13200Y/7620		13090Y/7560 13860Y/8000	12160Y/7020 12870Y/7430	(Note f)	13200Y/7620 13970Y/8070	11850Y/6840 12504Y/7240	
ige			132001/7020 13800Y/7970		14490Y/8370	13460Y/7770		14520Y/8380	13110Y/7570	
olta		13800	130001/13/0		14490	13460	12420	14520	13110	11880
>			20780Y/12000		21820Y/12600	20260Y/11700		22000Y/12700	19740Y/11400	
Medium Voltage			22860Y/13200		24000Y/13860	22290Y/12870		24200Y/13970	21720Y/12540	(Note f)
ed		23000			24150	22430	(Note f)	24340	21850	
Σ			24940Y/14400		26190Y/15120	24320Y/14040		26400Y/15240	23690Y/13680	
		0.4500	34500Y/19920		36230Y/20920	33640Y/19420		36510Y/21080	32780Y/18930	
		34500			36230	33640		36510	32780	
					Maximum		l		1	1
					Voltage (Note g)					
		46000			48300					
		69000			72500					

Continued on next page

236

237

238 239


Table 1 Standard Nominal System Voltages and Voltage Ranges (continued)

(Preferred system voltages in bold-face type)

VOLTAGE CLASS	Nominal System Voltage (Note a)			Nominal Utilization Voltage (Note h)	Maximum Voltage (note g)
	2-wire	3-wire	4-wire		
High Voltage		115000 138000 161000 230000			121000 145000 169000 242000
Extra-High Voltage		345000 400000 500000 765000			362000 420000 550000 800000
Ultra-High Voltage		1100000			1200000

NOTES:

- a) Three-phase three-wire systems are systems in which only the three-phase conductors are carried out from the source for connection of loads. The source may be derived from any type of three-phase transformer connection, grounded or ungrounded. Three-phase four-wire systems are systems in which a grounded neutral conductor is also carried out from the source for connection of loads. Four-wire systems in table 1 are designated by the phase-to-phase voltage, followed by the letter Y (except for the 240/120V delta system), a slant line, and the phase-to-neutral voltage. Single-phase services and loads may be supplied from either single-phase or three-phase systems. The principal transformer connections that are used to supply singlephase and three-phase systems are illustrated in Annex A.
- b) The voltage ranges in this table are illustrated in Annex B.
- c) For 120-600V nominal systems, voltages in this column are maximum service voltages. Maximum utilization voltages would not be expected to exceed 125 volts for the nominal system voltage of 120, nor appropriate multiples thereof for other nominal system voltages through 600 volts.
- d) A modification of this three-phase, four-wire system is available as a 120/208YV service for single-phase, three-wire, open-wye applications.
- e) Certain kinds of control and protective equipment presently available have a maximum voltage limit of 600 volts; the manufacturer or power supplier or both should be consulted to assure proper application.
- f) Utilization equipment does not generally operate directly at these voltages. For equipment supplied through transformers, refer to limits for nominal system voltage of transformer output.
- g) For these systems, Range A and Range B limits are not shown because, where they are used as service voltages, the operating voltage level on the user's system is normally adjusted by means of voltage regulators or load tap-changers to suit their requirements.
- h) Nominal utilization voltages are for low-voltage motors and control.
- Many 220V motors were applied on existing 208V systems on the assumption that the utilization voltage would not be less than 187V. Caution should be exercised in applying the Range B minimum voltages of table 1 to existing 208V systems supplying such motors.

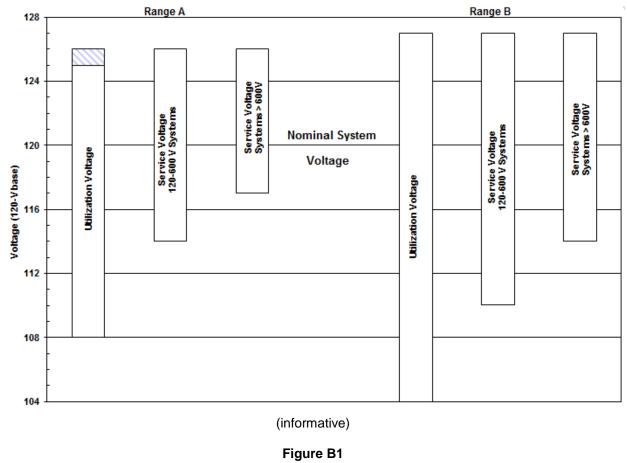
250		
250		
252		
252		
255 254		
255		
255 256		
250 257		
258		
258 259		
2 <i>59</i> 260		
200 261		
262		
262		
263 264		
265 265		
265		
260 267		
268		
269		
270		
271		
272		
273		
274		
275		
276		
277		
278		
279		
280		
281		
282		
283		Figure A1
284		ŭ
285	NOTES:	
286	a)	The above diagrams show connections of transformer secondary windings to supply the nominal system
287		voltages of table 1. Systems of more than 600 volts are normally three-phase and supplied by connections
288		(3), (5) ungrounded, or (7). Systems of 120-600 volts may be either single-phase or three phase, and all of
289	L)	the connections shown are used to some extent for some systems in this voltage range.
290 291	b)	Three-phase, three-wire systems may be solidly grounded, impedance grounded, or ungrounded but are not intended to supply loads connected phase to-neutral (as the four-wire systems are).
292	c)	In connections (5) and (6) the ground may be connected to the midpoint of one winding as shown (if
293	0)	available), to one phase conductor ("corner" grounded), or omitted entirely (ungrounded).
294	d)	Single-phase services and single-phase loads may be supplied from single-phase systems or from three-
295		phase systems. They are connected phase-to-phase when supplied from three-phase, three-wire systems
296		and either phase-to-phase or phase-to-neutral from three-phase, four-wire systems.
297		

Illustration of Voltage Ranges of Table 1

Figure B1 shows the basis of the Range A and Range B limits of table 1. The limits in table 1 were determined by multiplying the limits shown in this chart by the ratio of each nominal system voltage to the 120V base. [For exceptions, see note (c) to Figure B1.]

Annex B

305


298 299

300 301

A technique commonly called Conservation Voltage Reduction (CVR) is sometimes used for energy and or demand reduction. Determination of the value of CVR is beyond the scope of this standard. However, it is recommended that the application of CVR should be limited to voltages in Range A for normal

309 operation. Range B should be reserved for emergency, infrequent operation. CVR systems should not be 310 designed to operate below Range B for any condition.

311

- 316317 NOTES:
 - a) The shaded portion of Range A does not apply to 120-600-volt systems. See note (c) to table 1.
 - b) The difference between minimum service and minimum utilization voltages is intended to allow for voltage drop in the customer's wiring system. This difference is greater for service at more than 600 volts to allow for additional voltage drop in transformations between service voltage and utilization equipment.
 - c) The Range B utilization voltage limits in table 1 for 2400V through 13,800V systems are based on 90% and 110% of the voltage ratings of the standard motors used in these systems with some having a slight deviation from this figure.
- 324 325 326

312

313 314

315

318

319

320

321

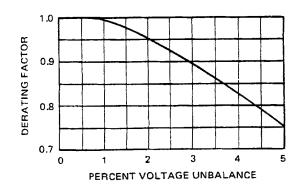
322

327		Annex C		
328		(Informative)		
329		Polyphase Voltage Unbalance		
330				
331	C.1	Introduction		
332		en en de la la la constance en la constance de la constante de constante (A) elle differencies de la constance de la		
333		s on the subject of three-phase voltage unbalance indicate that: (1) all utility-related costs required		
334		uce voltage unbalance and all manufacturing-related costs required to expand a motor's		
335 336		inced voltage operating range are ultimately borne directly by the customer, (2) utilities' incremental rement costs are maximum as the voltage unbalance approaches zero and decline as the range		
337		ses, and (3) manufacturers' incremental motor-related costs are minimum at zero voltage		
338		ince and increase rapidly as the range increases.		
339	unbala	ince and increase rapidly as the range increases.		
340	When	these costs, which exclude motor-related energy losses, are combined, curves can be developed		
341		dicate the annual incremental cost to the customer for various selected percent voltage unbalance		
342	limits.			
343				
344	The op	ptimal range of voltage unbalance occurs when the costs are minimum.		
345				
346	a)	Field surveys tend to indicate that the voltage unbalances range from 0–2.5 percent to 0–4.0		
347		percent with the average at approximately 0–3.0 percent		
348	b)	Approximately 98 percent of the electric supply systems surveyed are within the 0–3.0 percent		
349		voltage-unbalance range, with 66 percent at 0–1.0 percent or less		
350				
351	C.2	Recommendation		
352 353	6.2	Recommendation		
353 354	Electri	c supply systems should be designed and operated to limit the maximum voltage unbalance to 3		
355	percent when measured at the electric-utility revenue meter under no-load conditions.			
356	percen			
357	This re	ecommendation should not be construed as expanding the voltage ranges prescribed in 5. If the		
358		inced voltages of a polyphase system are near the upper or lower limits specified in table 1, Range		
359		ange B, each individual phase voltage should be within the limits in table 1.		
360				

C.3 362 **Calculation for Voltage Unbalance** 363

364 Voltage unbalance of a polyphase system is expressed as a percentage value and calculated as follows:

Percent voltage unbalance=100× (maximum deviation from average V) (Average Voltage)


366 367

370

Example: with phase-to-phase voltages of 230, 232, and 225, the average is 229; the maximum deviation 368 from average is 4; and the percent unbalance is $(100 \times 4)/229 = 1.75$ percent. 369

C.4 371 **Derating for Unbalance**

372 The rated load capability of polyphase equipment is normally reduced by voltage unbalance. A common 373 374 example is the derating factor, from figure C1, used in the application of polyphase induction motors. 375

376 377

379

380

381

378

Figure C1 **Derating factor**

NOTE: See 14.36 of NEMA MG 1-2009 for more complete information about the derating factor.

382 C.5 **Protection from Severe Voltage Unbalance** 383 384

385 User systems should be designed and operated to maintain a reasonably balanced load.

386 In severe cases of voltage unbalance, consideration should be given to equipment protection by applying 387 unbalance limit controls. 388

391

392

393

Annex D (Informative) Applicable Standards

394 D.1 List of Standards395

The following is a partial list of standards (by general number) for equipment from which voltage ratings and other characteristics can be obtained.

- 398
- 399

Equipment	Standard
Air-conditioning and refrigerating equipment nameplate	ARI 110
voltages	
Air filter equipment	ARI 680
Ammonia compressors and compressor units	ARI 510
Application, installation, and servicing of unitary systems	ARI Series
Automatic commercial ice makers	ARI 810
Cable terminating devices (power)	IEEE 48
Central forced-air electric heating equipment	ARI Series
Central-station air-handling units	ARI 430
Connectors for electric utility applications	ANSI C119.1
Definite purpose magnetic contactors	ARI 780
Dehumidifiers	ANSI/AHAM DH-1
Electrical measuring instruments	ANSI C39 Series
Electrical power insulators	ANSI C29 Series
Electricity metering	ANSI C12 Series
Forced circulation, free-delivery air coolers for refrigeration	ARI 420
Gas-fired furnaces	ANSI Z21 Series
Industrial control apparatus	ANSI/NEMA ICS Series
Insulated conductors	ANSI/NFPA 70
	AEIC Series
	ICEA Series
Lamps	
Bactericidal lamps	ANSI C78 Series
Electrical discharge lamp	ANOI CI O Delles
Incandescent lamps	
Lamp ballasts	ANSI C82 Series
Low-voltage fuses	ANSI/NEMA FU 1
Low-voltage molded-case circuit breakers	NEMA AB 1
Mechanical transport refrigeration units	ARI 1110
Packaged terminal air conditioners	ARI 310/380
Positive displacement refrigerant compressor and compressor	ANSI/ARI 520
units	ANSI/ARI 540

Equipment	Standard
Power switchgear	
Automatic circuit reclosers	
Automatic line sectionalizers	
Capacitor switches	
Distribution current-limiting fuses	
Distribution cutout and fuse links	
Distribution enclosed single-pole air switches	
Distribution oil cutouts and fuse links	
Fused disconnecting switches	ANSI C37 Series
High-voltage air switches	
Manual and automatic station control	
Power circuit breakers	
Power fuses	
Relays and relay systems	
Supervisory and associated telemetering equipment	
Switchgear assemblies including metal enclosed bus	
Reciprocating water-chilling packages	ANSI/ARI 550
	ANSI/ARI 590
Remote mechanical draft air-cooled refrigerant condensers	ARI 460
Room air conditioners	ANSI/AHAM RAC-1
Room fan-coil airs	ARI 440
Rotating electrical machinery	
AC induction motors	
Cylindrical rotor synchronous generators	ANSI C50 Series
Salient pole synchronous generator and condensers	NEMA MG1
Synchronous motors	
Universal motors	
Central system humidifiers	ANSI/ARI 620
Self-contained mechanically refrigerated drinking-water coolers	ANSI/ARI 1010
Shunt power capacitors	ANSI/IEEE 18
Solenoid valves for liquid and gaseous flow	ARI 760
Static power conversion equipment	ANSI C34
Surge arresters	ANSI/IEEE C62.2
	ANSI/IEEE C62.21
	NEMA LA1
Transformers, regulators, and reactors	
Arc furnace transformers	
Constant-current transformers	
Current-limiting reactors	
Distribution transformers, conventional subway-type	
Dry type	ANSI/IEEE C57 Series
Instrument transformers	ANSI/NEMA ST20
Power transformers	
Rectifier transformers	
Secondary network transformers	
Specialty	
Step-voltage and induction-voltage regulators	
Three-phase load-tap-changing transformers	
Unit ventilators	ARI 840
Unitary air-conditioning and air-source heat pump equipment	ARI 210/240
Commercial and industrial unitary air-conditioning equipment	ARI 340/360
Wiring devices	ANSI C73 Series

0 *See list of organizations in Section D2.

402 D.2 Organizations Referred to in Section D.1

AEIC	Association of Edison Illuminating Companies	
ALIC	P.O. Box 2641	
	Birmingham, AL 35291	
AHAM	Association of Home Appliance Manufacturers	
	1111 19th Street NW, Suite 402	
	Washington, DC 20036	
AMCA	Air Movement and Control Association	
	30 West University Drive	
	Arlington Heights, IL 60004	
ANSI	American National Standards Institute	
	25 West 43rd Street, 4th Floor	
	New York, NY 10036	
ARI	Air Conditioning and Refrigeration Institute	
	(Air-Conditioning, Heating, and Refrigeration Institute)	
	4100 N. Fairfax Drive; Suite 200	
	Arlington, VA 22203	
HI	Hydronics Institute	
	Division of GAMA Gas Appliance Manufacturers Association	
	2107 Wilson Blvd.	
	Arlington, VA 22201-3042	
IEEE	The Institute of Electrical and Electronics Engineers, Inc.	
	445 Hoes Lane	
	Piscataway, NJ 08855	
ICEA	Insulated Cable Engineers Association	
	PO Box 1568	
	Carrollton, GA 30112	
NEMA	National Electrical Manufacturers Association	
	1300 North 17th Street; Suite 900	
	Rosslyn, VA 22209	
NFPA	National Fire Protection Association	
	1 Batterymarch Park	
	Quincy, MA 02169-7471	
	QUINCY, MA 02169-7471	

408 §